首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2‐X‐1, 2‐Difluoroalk‐1‐enylxenon(II) salts were prepared by the reaction of XeF2 with XCF=CFBF2 (X = F, trans‐H, cis‐Cl, trans‐Cl, cis‐CF3, cis‐C2F5) but no organoxenon(II) compounds were obtained when the trans‐isomers of boranes, trans‐XCF=CFBF2 (X = CF3, C4F9, C4H9, Et3Si), were used under similar conditions.  相似文献   

2.
The new type of alkenylxenon(II) salts [CF2=CXXe] [BF4] (X = H, Cl, CF3) was prepared by reacting the corresponding alkenyldifluoroboranes CF2=CXBF2 with XeF2 in 1, 1, 1, 3, 3‐pentafluoropropane (PFP) at —60 °C. The alkenylxenon(II) salts were characterised by multinuclear NMR spectroscopy. The influence of the substituent X at C‐1 on the stability of alkenylxenon(II) salts is discussed. Additionally the preparation of the potassium alkenyltrifluoroborate salts K [CF2=CXBF3] and their transformation into the boranes CF2=CXBF2 by fluoride abstraction in PFP is reported.  相似文献   

3.
Preparations of the title compounds, 5 – 7 (Scheme 1 and Table 1), of their ammonium salts, 9 – 11 (Scheme 2 and Table 2), and of the corresponding cinnamaldehyde‐derived iminium salts 12 – 14 (Scheme 3 and Table 3) are reported. The X‐ray crystal structures of 15 cinnamyliminium PF6 salts have been determined (Table 4). Selected 1H‐NMR data (Table 5) of the ammonium and iminium salts are discussed, and structures in solution are compared with those in the solid state.  相似文献   

4.
The structures of the main products resulting from photocyclodimerization of the title compound 2 and of other 3‐methyl‐substituted ‘oxacyclohex‐2‐en‐1‐ones’ (=dihydropyranones) were determined by X‐ray crystallography. In connection, the 13C‐NMR chemical shifts of the cyclobutane C‐atoms of these dimers allow a clear differentiation between head‐to‐head and head‐to‐tail regioisomers, all structurally related to those of isophorone ( 1 ).  相似文献   

5.
The title compound, [Ti2(CF3O3S)4(C14H15NO2S)2]·2CH2Cl2, consists of unique centrosymmetric dimers, with an eight‐membered ring derived from the monomer subunits by formation of two Ti—(N,O)—S—O head‐to‐tail sequences around a crystallographic inversion centre, and two ordered di­chloro­methane solvate mol­ecules. The Ti ion has distorted octahedral coordination, through the N atom and one O atom of one p‐toluene­sulfon­amido group linked by an ethyl group to the bound cyclo­penta­diene moiety, one O atom from the other p‐toluene­sulfon­amido group and two singly bound tri­fluoro­methanesulfonates moieties which are coordinated in pseudo‐cis positions. Both Ti—O(sulfonamido) bond lengths [2.149 (3) and 2.388 (3) Å] are considered bonding interactions.  相似文献   

6.
The molecular structure of the title compound, C14H14BrF3O2, adopts a bent conformation. Intramolecular O—H?F and intermolecular O—H?O interactions form a bifurcated hydrogen bond which produces a supramolecular assembly of head‐to‐tail dimers.  相似文献   

7.
The salts 3‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium saccharinate, C9H10F4NO+·C7H4NO3S, (1), and 3‐[(2,2,3,3,3‐pentafluoropropoxy)methyl]pyridinium saccharinate, C9H9F5NO+·C7H4NO3S, (2), i.e. saccharinate (or 1,1‐dioxo‐1λ6,2‐benzothiazol‐3‐olate) salts of pyridinium with –CH2OCH2CF2CF2H and –CH2OCH2CF2CF3meta substituents, respectively, were investigated crystallographically in order to compare their fluorine‐related weak interactions in the solid state. Both salts demonstrate a stable synthon formed by the pyridinium cation and the saccharinate anion, in which a seven‐membered ring reveals a double hydrogen‐bonding pattern. The twist between the pyridinium plane and the saccharinate plane in (2) is 21.26 (8)° and that in (1) is 8.03 (6)°. Both salts also show stacks of alternating cation–anion π‐interactions. The layer distances, calculated from the centroid of the saccharinate plane to the neighbouring pyridinium planes, above and below, are 3.406 (2) and 3.517 (2) Å in (1), and 3.409 (3) and 3.458 (3) Å in (2).  相似文献   

8.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

9.
《中国化学会会志》2018,65(5):613-627
The general species (2,2′‐bpy)MX2 (M = Pd, Pt; X = Br, I) in a crystallization process results in an isomorphous convergence in P21/c. Yet, with polyfluorinated side chains, the general [5,5′‐(HCF2CF2CH2OCH2)2‐2,2′‐bpy]MX2 species proceeds to crystallize the isomorphous structures of 5 (M = Pt; X = I) and 6 (M = Pd; X = I) in P21/c only; structure 7 (M = Pt; X = Br) crystallizes in P21/c but is not isomorphous with 5 and 6 , and structure 8 (M = Pd; X = Br) forms differently in P–1. The causes making the system nonlinear are (1) the intramolecular CF2─HX(─M) hydrogen bonds found in 5–7 but not in 8, and (2) in response to the transition from I to Br, bifurcated [C─H]2 F ─C hydrogen bonds that are formed in 5 and 6 and bifurcated C─ H [F─C]2 hydrogen bonds in 7 . Additionally, the intramolecular CF2─HX(─M) hydrogen bonding from compounds 5–7 could be affirmed by the IR studies.  相似文献   

10.
The title compounds, 17‐(1H‐indazol‐1‐yl)androsta‐5,16‐dien‐3β‐ol, (I), and 17‐(2H‐indazol‐2‐yl)androsta‐5,16‐dien‐3β‐ol, (II), both C26H32N2O, have an indazole substituent at the C17 position. The six‐membered B ring of each compound assumes a half‐chair conformation. A twist of the steroid skeleton is observed and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular orbital Hartree–Fock method. In the 1H‐indazole derivative, (I), the molecules are joined in a head‐to‐head fashion via O—H...O hydrogen bonds, forming chains along the a axis. In the 2H‐indazole derivative, (II), the molecules are joined in a head‐to‐tail fashion with one of the N atoms of the indazole ring system acting as the acceptor. The hydrogen‐bond pattern consists of zigzag chains running along the b axis. Substituted steroids have proven to be effective in inhibiting androgen biosynthesis through coordination of the Fe atoms of some enzymes, and this study shows that indazole‐substituted steroids adopt twisted conformations that restrict their intermolecular interactions.  相似文献   

11.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

12.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

13.
A convenient synthesis of the 1,3‐dihydro‐1,3,3‐tris(perfluoroalkyl)isobenzofuran‐1‐ols 3a , b was elaborated starting from commercially available phthaloyl dichloride and trimethyl(perfluoroalkyl)silanes (Me3SiRf) 1a , b (Rf=CF3, C2F5) in the presence of a fluoride source (Schemes 1 and 3). In a reaction analogous to alkyl Grignard reagents, double chloride substitution by two perfluoroalkyl groups and subsequent addition of one perfluoroalkyl group with concomitant ring closure led to this new class of compounds (Scheme 2). The syntheses of the alcohols and some alcoholates, as well as of the corresponding trimethylsilyl ethers are described. A combination of special 1D and 2D NMR experiments allowed the assignment of all atoms of the new compounds. The solid‐state structure of 1,3‐dihydro‐1,3,3‐tris(trifluoromethyl)isobenzofuran‐1‐ol ( 3a ) was elucidated by X‐ray diffraction methods.  相似文献   

14.
The title compound, C8H19NO7P2, is a member of the bis­phosphonate family of therapeutic compounds. PHPBP has inner‐salt character, consisting of a negatively charged PO3 group and a positively charged N atom. The six‐membered piperidine ring adopts an almost‐perfect chair conformation. The hydroxyl group and the N atom have gauche and trans conformations in relation to the O—C—C—C—N backbone, respectively. Hydrogen bonding is the main contributor to the packing in the crystal, which consists of head‐to‐head dimers formed through phosphonyl–phosphonyl hydrogen bonds, while O—H⋯O and N—H⋯O interactions join the dimers into a plane parallel to crystallographic b and c axes.  相似文献   

15.
Sterically unprotected thiophene/phenylene co‐oligomer radical cation salts BPnT.+[Al(ORF)4]? (ORF=OC(CF3)3, n=1–3) have been successfully synthesized. These newly synthesized salts have been characterized by UV/Vis‐NIR absorption and EPR spectroscopy, and single‐crystal X‐ray diffraction analysis. Their conductivity increases with chain length. The formed meso‐helical stacking by cross‐overlapping radical cations of BP2T.+ is distinct from previously reported face‐to‐face overlaps of sterically protected (co‐)oligomer radical cations.  相似文献   

16.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

17.
An efficient cobalt‐catalyzed chemoselective reduction of β‐CF3‐α,β‐unsaturated ketones using benzylamine as hydrogen transfer agent involving intramolecular 1,5‐hydrogen transfer is reported. The reaction proceeded smoothly with a relatively wide range of substrates including those bearing aromatic heterocycles such as a furyl ring system in high yields (74–92 %). This provides an efficient method for the synthesis of β‐CF3 saturated ketones in one‐pot. This methodology was also applied to the selective C=C reduction of other enone substrates bearing no β‐CF3‐substituent, of which β‐substituted or β,β‐disubstituted enones are tolerated, giving the desired products in good yields (72–75 %). Mechanistic studies indicate that the reaction involves 1,5‐hydrogen transfer.  相似文献   

18.
The homofullerene compound cis‐2‐C60(CF2)2, which has an unusual kind of open/closed valence tautomerism undergoes consecutive regioselective hydrogenation at bridgehead carbon atoms upon reduction with Zn/Cu couple in H2O‐toluene mixture. The tautomerism barrier in cis‐2‐C60(CF2)2 is negligible in the neutral state, whereas negative charging both impedes tautomeric transformation and promotes regioselective addition of electrophilic species at the bridgehead carbon atoms. In light of this observation, two novel homofullerene derivatives, mixed [6,6]‐open/closed C60(CF2)2H2 and [6,6]‐open cis‐2‐C60(CF2)2H4, were synthesized and their structures were unambiguously determined by means of single crystal X‐ray crystallography and NMR spectroscopy.  相似文献   

19.
A direct and convenient method has been developed for the synthesis of optically active pyrrolidines bearing a quaternary stereogenic center containing a CF3 group at the C‐3 position of the pyrrolidine ring. The synthesis system, CuI/Si‐FOXAP‐catalyzed exo‐selective 1,3‐dipolar cycloaddition of azomethine ylides with β‐CF3‐β,β‐disubstituted nitroalkenes, provides pyrrolidines with high diastereoselectivities (up to >98:2 d.r.) and excellent enantioselectivities (up to >99.9 ee) and performs well for a broad scope of substrates under mild conditions.  相似文献   

20.
Inhaltsübersicht. Die Reaktion von Difluorhalogenmethanen, CF2X2, mit Phosphanen, R3P, in Gegenwart von Metallen und Carbonylverbindungen, R″R′CO, führt zur Bildung geminaler Difluorolefine, R″R′C=CF2. Die sorgfältige Untersuchung der Einzelschritte dieser komplexen Reaktion zeigt, daß intermediär Difluorhalogenmethylphosphoniumhalogenide, [R3P–CF2X]X, und Difluormethylenphosphorane, R3P – c??-F2, gebildet werden. Die Phosphoniumsalze sind stabil und können als kristalline Substanzen isoliert werden. Durch Metalle oder Phosphene werden sie zu den instabilen Difluormethylenphosphoranen reduziert. Diese zersetzen sich beim Fehlen geeigneter Reaktionspartner in Phosphan und Difluorcarben, CF2. Ihre Bildung durch Addition von CF2 an R3P ist nicht möglich. Mit Halogenwasserstoffen bilden sie Difluormethylphosphoniumsalze, [R3P-CHF2]X. Formation and Stability of Difluoromcthylene Phosphoranes, R3P —c?F2 In the presence of metals and carbonyl compounds, R″R′CO, the reaction of difluoro-halomethanes, CF2X2, with phosphanes, R3P, leads to the formation of geminal difluoroolefins, R″R′C=CF2. Our investigations have proved that difluorohalomethylphosphonium halides, [R3P–CF2X]X, and difluoromethylene phosphoranes, R3P–C??F2, are formed intermediately. The phosphonium salts are stable. They can be isolated as crystalline substances. They are reduced by metals or phosphanes forming unstable difluoromethylene phosphoranes as intermediates. These decompose into phosphane and difluorocarbene, CF2, if suitable reactants are absent. Their reaction with hydrogen halides, HX, yields difluoromethylphosphonium salts, [R3P–CHF2]X. The formation of difluoromethylene phosphoranes by addition of CF2 to R3P is not possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号