首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the formation of Pt nanocubes (NCs) and their electrocatalytic oxygen reduction reaction (ORR) properties and structural stability using two different capping agents, namely, polyvinylpyrrolidone (PVP) and oleylamine (OAm). The mono-dispersity of the obtained Pt NCs and their interactions with PVP and OAm were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The TEM data show a high mono-dispersity (82 %) and a large mean particle size (9-10 nm) for the Pt NCs obtained by the oleylamine-assisted method compared to those prepared via the PVP-assisted procedure (68 %, 6–7 nm). FTIR, XPS, and TGA data show that PVP and OAm still remain at the Pt surface, despite washing. Interestingly, the OAm-capped Pt NCs show significantly higher electrochemically active surface area (ECSA) and ORR activity than the PVP-capped ones. An accelerated stress protocol, however, reveals that the OAm-capped NCs possess a poor structural stability during electrochemical cycling. The loss of a defined surface arrangement in the NCs is connected with a transformation into a near-spherical particle shape. In contrast, the PVP-capped NCs mainly retain their particle shape due to their strong capping behavior. In addition, we have developed a degradation model for NCs as a function of electrochemical parameters such as upper potential and cycle number. Altogether, we provide fundamental insights into the electronic interactions between capping agent and Pt NCs and the role of the adsorption strength of the capping agent in improving the electrochemical ORR performance as well as the structural stability of shape-controlled nanoparticles.  相似文献   

2.
A Cu–Pt nanoparticle catalyst supported on TiO2 nanowires (NWs) was prepared through regenerative counterion exchange–reduction using polyelectrolyte brush as template. Cationic polydimethyl aminoethyl methacrylate brushes were grafted onto TiO2 NWs. Cu–Pt nanocrystals were produced by anionic counterions CuCl42? and PtCl62? bound with the polymer brush through in situ reduction with NaBH4 of high density and low polydispersity. The as‐prepared TiO2 NWs/polymer brush/Cu–Pt was characterized by Fourier transform infrared spectroscopy (FT‐IR spectrometry), X‐ray photoelectron spectroscopy, transmission electron microscopy, and UV–Vis adsorption spectrometry analyses. Results showed that the highly dispersed Cu and Pt nanoparticles were present on the surface of the TiO2 NWs/polymer brush. The resultant TiO2 NWs/polymer brush/Cu–Pt exhibited extremely high catalytic activity and reduced p‐nitrophenol at room temperature. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Multicomponent Pt‐based nanowires (NWs) have attracted widespread attention as eletrocatalysts toward direct alcohol fuel cells because of their unique one‐dimensional structure and high reaction dynamics. Quaternary PtPdAuTe NWs are designed via a facile template method, and NWs with a different composition are obtained by adjusting the feed ratio of metal precursors. The direct displacement reaction of metal precursors with Te NWs and the partial oxidation of Te lead to the formation of quaternary NWs. The rough surface and abundant reactive sites deriving from the rearrangement of metal atoms on the Te NWs surface endow the PtPdAuTe NWs with a superior electrocatalytic property and durability for methanol oxidation. The Pt20Pd20Au10Te50 NWs display the largest mass activity and best stability among all catalysts. The preparation of PtPdAuTe NWs could provide a viable strategy for the preparation of other multicomponent NWs.  相似文献   

4.
The polyol reduction of a Ag precursor in the presence of an organic stabilizer, such as poly(vinylpyrrolidone), is a widely used method for the production of Ag nanowires (NWs). However, organic capping molecules introduce insulating layers around each NW. Herein we demonstrate that Ag NWs can be produced in high yield without any organic stabilizers simply by introducing trace amounts of NaCl and Fe(NO3)3 during low‐temperature polyol synthesis. The heterogeneous nucleation and growth of Ag NWs on initially formed AgCl particles, combined with oxidative etching of unwanted Ag nanoparticles, resulted in the selective formation of long NWs with an average length of about 40 μm in the absence of a capping or stabilizing effect provided by surface‐adsorbing molecules. These organic‐stabilizer‐free Ag NWs were directly used for the fabrication of high‐performance transparent or stretchable electrodes without a complicated process for the removal of capping molecules from the NW surface.  相似文献   

5.
The rational synthesis of Pt-based alloyed nanowires still remains a great challenge because of the different reduction potentials between Pt and another metal and the intrinsic feature of isotropic growth in face-centered cubic (fcc) structured Pt. In this work, PtPd alloyed nanowires with ultrahigh aspect ratio anchored on graphene (PtPd NWs/graphene) were synthesized by a facile solvothermal method without the use of any templates or surfactants. Due to the integration of ultralong PtPd nanowires and stable graphene support, PtPd NWs/graphene exhibited outstanding electrochemical activity toward methanol oxidation reaction (MOR) in comparison with pure Pt NWs/graphene and commercial Pt/C catalysts. Meanwhile, PtPd NWs/graphene had a much higher current density than Pt NWs/graphene and commercial Pt/C catalysts at a constant potential for 7200s in alkaline methanol solution. Moreover, after 1000 cycles of durability testing, PtPd NWs/graphene retained 89.2% of its initial mass activity, much superior to the 63.7% retained for commercial Pt/C.  相似文献   

6.
Pt nanoparticles are typically decorated as co‐catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co‐catalyst loadings is a key challenge in the field. We explore a dewetting‐dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co‐catalyst mass activity for H2 generation. For this, we sputter first Pt‐Ni bi‐layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting‐alloying of the Pt‐Ni bi‐layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt‐decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non‐porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co‐catalyst, which provides an increased surface‐to‐volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co‐catalyst surface for H2 evolution.  相似文献   

7.
Shape‐controlled metal nanocrystals, such as nanowires and nanoflowers, are attractive owing to their potentially novel catalytic properties and bimetallic nanocrystals composed of two distinct metals are expected to act as highly active catalysts. However, their catalytic activities are limited because of the capping agents adsorbed on the metal surfaces, which are necessary for the preparation and dispersion of these nanocrystals in solvents. Therefore, the preparation of bimetallic shape‐controlled noble metal nanocrystals with clean surfaces, devoid of almost all capping agents, are expected to have high catalytic activity. Herein, we report the preparation of bimetallic Au–Ag nanoflowers using melamine as the capping agent. The bimetallic Au–Ag nanoflowers with a clean surface were subsequently obtained by a support and extraction method. The bimetallic nanoflowers with a clean surface were then used for the aerobic oxidation of 1‐phenylethyl alcohol and they exhibited high rates for the formation of acetophenone compared to Au nanoflowers and spherical nanoparticles with almost the same size and Au/Ag ratio. We also show that Au–Ag nanoflowers containing only 1 % Ag (Au99–Ag1NFs) exhibit the highest rate of acetophenone formation among Au–Ag nanoflowers with different Au/Ag ratios owing to an increase in the electron density of the Au atoms that act as active sites for the oxidation of 1‐phenylethyl alcohol.  相似文献   

8.
The design of high‐performance electrocatalysts for the alkaline hydrogen evolution reaction (HER) is highly desirable for the development of alkaline water electrolysis. Phase‐ and interface‐engineered platinum–nickel nanowires (Pt‐Ni NWs) are highly efficient electrocatalysts for alkaline HER. The phase and interface engineering is achieved by simply annealing the pristine Pt‐Ni NWs under a controlled atmosphere. Impressively, the newly generated nanomaterials exhibit superior activity for the alkaline HER, outperforming the pristine Pt‐Ni NWs and commercial Pt/C, and also represent the best alkaline HER catalysts to date. The enhanced HER activities are attributed to the superior phase and interface structures in the engineered Pt‐Ni NWs.  相似文献   

9.
Colloidal GaP nanowires (NWs) were synthesized on a large scale by a surfactant-free, self-seeded solution-liquid-solid (SLS) method using triethylgallium and tris(trimethylsilyl)phosphine as precursors and a noncoordinating squalane solvent. Ga nanoscale droplets were generated in situ by thermal decomposition of the Ga precursor and subsequently promoted the NW growth. The GaP NWs were not intentionally doped and showed a positive open-circuit photovoltage based on photoelectrochemical measurements. Purified GaP NWs were used for visible-light-driven water splitting. Upon photodeposition of Pt nanoparticles on the wire surfaces, significantly enhanced hydrogen production was observed. The results indicate that colloidal surfactant-free GaP NWs combined with potent surface electrocatalysts could serve as promising photocathodes for artificial photosynthesis.  相似文献   

10.
Searching for new anti-poisoning Pt-based catalysts with enhanced activity for alcohol oxidation is the key in direct alcohol fuel cells (DAFCs). However, in the traditional strategy for designing bimetallic or multimetallic alloy is still difficult to achieve a satisfactory heterogeneous electrocatalyst because the activity often depends on only the surface atoms. Herein, we fabricate the multicomponent active sites by creating a sulfide structure on 1D PtNiCo trimetallic nanowires (NWs), to give a PtNiCo/NiCoS interface NWs (IFNWs). Owing to the presence of sulfide interfaces, the PtNiCo/NiCoS IFNWs enable an impressive methanol/ethanol oxidation reaction (MOR/EOR) performance and excellent anti-CO poisoning tolerance. They have the MOR and EOR mass activities of 2.25 Amg-1Pt and 1.62 Amg-1Pt, around 1.26, 3.21 and 1.46, 2.96 times higher than those of PtNiCo NWs and commercial Pt/C, respectively. CO-stripping and XPS measurements further demonstrate that the new interfacial structure and optimal bonding of Pt−CO can result in accelerating the removal of surface adsorbed carbonaceous intermediates. Moreover, such a unique structure has also demonstrated a much-improved ability for the electrochemical detection of some important molecules (H2O2 and NH2NH2).  相似文献   

11.
Platinum–ruthenium (Pt–Ru) nanoparticles were successfully deposited, for the first time, on the surface of SnO2 nanowires grown directly on carbon paper (Pt–Ru/SnO2 NWs/carbon paper) by potentiostatic electrodeposition method. The resultant Pt–Ru/SnO2 NWs/carbon paper composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic activities of these composite electrodes for methanol oxidation were investigated and higher mass and specific activities in methanol oxidation were exhibited as compared to Pt–Ru catalysts deposited on glassy carbon electrode.  相似文献   

12.
Fluorine‐doped hierarchical porous single‐crystal rutile TiO2 nanorods have been synthesized through a silica template method, in which F? ions acts as both n‐type dopants and capping agents to make the isotropic growth of the nanorods. The combination of high crystallinity, abundant surface reactive sites, large porosity, and improved electronic conductivity leads to an excellent photoelectrochemical activity. The photoanode made of F‐doped porous single crystals displays a remarkably enhanced solar‐to‐hydrogen conversion efficiency (≈0.35 % at ?0.33 V vs. Ag/AgCl) under 100 mW cm?2 of AM=1.5 solar simulator illumination that is ten times of the pristine solid TiO2 single crystals.  相似文献   

13.
A nonenzymatic amperometric electrochemical sensor for the detection of hydrogen peroxide (H2O2) was fabricated based on highly dense silver nanowires (Ag NWs) and chitosan (CS) film. Ag NWs were synthesized by a poly(vinyl pyrrolidone) (PVP)‐mediated polyol process in the presence of manganese chloride (MnCl2), and were characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), and X‐ray diffraction (XRD). Under the optimal conditions, the proposed nonenzymatic sensor exhibited good electrocatalytic activity towards the reduction of H2O2, and could detect H2O2 in the linear range of 0.008–1.35 mM, with a detection limit of 2 µM (S/N=3).  相似文献   

14.
We investigated the structure and electronic properties of unidirectional Pt(2)Si nanowires (NWs) grown on a Si(100)-2 degrees off surface. We found that Pt(2)Si NWs were formed along the step edges of the Si(100)-2 degrees off surface with c(4x6) reconstructions that occurred on the terraces of Si(100) using scanning tunneling microscopy and the structure of formed NWs was found to be Pt(2)Si by core-level photoemission spectroscopy. Moreover, we confirmed that the electronic band structures of the NWs along the NW direction are different from those perpendicular to the NWs and the surface state induced by the Pt(2)Si NWs was observed with a small density of state using the angle-resolved photoemission spectra.  相似文献   

15.
A new and highly improved electrocatalytic system of a composited hybrid electrode with Pt-based nanoparticles (NPs) and nanowires (NWs) is reported for low temperature polymer electrolyte fuel cells. Pt-based NWs have been realized as an option that can provide facile charge transport with a high activity for oxidation of fuels, for overcoming the disadvantages of Pt-based NPs as the state-of-the-art electrocatalysts. Moreover, a network-like electrode structure using the anisotropic morphology of Pt-based NWs can also supply efficient mass transport and mitigate uneconomical use of Pt by reducing embedded catalyst particles. Herein, we demonstrate that an advanced and very efficient hybrid structure of electrode, composited with highly-dispersed Pt-based NPs and NWs, shows significantly improved performances both in the CH3OH-fueled and H2-fueled fuel cells via synergistic effects by integrating advantages of two different morphologies.  相似文献   

16.
Cuprous selenide nanocrystals have hallmark attributes, especially tunable localized surface plasmon resonances (LSPRs) and super‐ionic behavior. These attributes of cuprous selenide are now integrated with a one‐dimensional morphology. Essentially, Cu2Se nanowires (NWs) of micrometer‐scale lengths and about 10 nm diameter are prepared. The NWs exhibit a super‐ionic phase that is stable at temperatures lower than in the bulk, owing to compressive lattice strain along the radial dimension of the NWs. The NWs can be switched between oxidized and reduced forms, which have contrasting phase transition and LSPR characteristics. This work thus makes available switchable, one‐dimensional waveguides and ion‐conducting channels.  相似文献   

17.
以PS-b-PEO纳米孔膜为基体电极,采用电沉积技术制备了Pt纳米线,用扫描电化学显微镜(SECM)、扫描电镜(SEM)和X-射线能谱(EDS)分析法表征了基体电极和Pt纳米线。利用循环伏安法考察了Pt纳米线的电化学性能。实验结果表明,Pt纳米线对甲酸氧化表现出优异的电催化活性。此外,Pt纳米线具有良好的稳定性和重现性,可望用于实际样品中甲酸的测定。  相似文献   

18.
Qin X  Wang H  Miao Z  Wang X  Fang Y  Chen Q  Shao X 《Talanta》2011,84(3):673-678
A silver nanowires modified platinum (Ag NWs/Pt) electrode was developed for simultaneous and selective determination of chloride, bromide and iodide ions by cyclic voltammetry in aqueous solutions. Silver nanowires were synthesized by an l-cysteine-assisted poly (vinyl pyrrolidone) (PVP)-mediated polyol route. X-ray diffraction (XRD) and scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were employed to investigate the prepared nanowires. The intrinsic high surface area and the fast electron transfer rate ascribed from the nanowire structure could further improve halide detection performance. The determination was based on measurement of the well-separated oxidation peak currents of respective silver halides formed on the surface of silver during an anodic potential sweep. The concentration range was linear from 50 μM to 20.2 mM for bromide and iodide and 200 μM to 20.2 mM for chloride, and the sensitivity was 0.059 μA/mM, 0.042 μA/mM and 0.032 μA/mM for chloride, bromide and iodide, respectively. The correlation coefficient was 0.999 in each case. The Ag NWs/Pt electrode offered a useful platform for the development of a highly sensitive halide sensor.  相似文献   

19.
Engineering noble metal nanostructures at the atomic level can significantly optimize their electrocatalytic performance and remarkably reduce their usage. We report the synthesis of atomically dispersed Pt on screw-like Pd/Au nanowires by using ultrafine Pd nanowires as seeds. Au can selectively grow on the surface of Pd nanowires by an island growth pattern to fabricate surface defect sites to load atomically dispersed Pt, which can be confirmed by X-ray absorption fine structure measurements and aberration corrected HRTEM images. The nanowires with 2.74 at % Pt exhibit superior HER properties in acidic solution with an overpotential of 20.6 mV at 10 mA cm−2 and enhanced alkaline ORR performance with a mass activity over 15 times greater than the commercial platinum/carbon (Pt/C) catalysts.  相似文献   

20.
We report a facile synthesis of ultrathin (2.5 nm) trimetallic FePtPd alloy nanowires (NWs) with tunable compositions and controlled length (<100 nm). The NWs were made by thermal decomposition of Fe(CO)(5) and sequential reduction of Pt(acac)(2) (acac = acetylacetonate) and Pd(acac)(2) at temperatures from 160 to 240 °C. These FePtPd NWs showed composition-dependent catalytic activity and stability for methanol oxidation reaction. Among FePtPd and FePt NWs as well as Pd, Pt, and PtPd nanoparticles (NPs) studied in 0.2 M methanol and 0.1 M HClO(4) solution, the Fe(28)Pt(38)Pd(34) NWs showed the highest activity, with their mass current density reaching 488.7 mA/mg Pt and peak potential for methanol oxidation decreasing to 0.614 V from 0.665 V (Pt NP catalyst). The NW catalysts were also more stable than the NP catalysts, with the Fe(28)Pt(38)Pd(34) NWs retaining the highest mass current density (98.1 mA/mg Pt) after a 2 h current-time test at 0.4 V. These trimetallic NWs are a promising new class of catalyst for methanol oxidation reaction and for direct methanol fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号