首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

2.
Xiao ZHAI  Yi DING 《物理化学学报》2017,33(7):1366-1378
燃料电池是将化学能直接转化为电能的能量转换装置,具有绿色、高效、便携等特点。对于大多数使用氧气或者空气为氧化剂的燃料电池而言,其阴极氧还原反应动力学缓慢、稳定性差是阻碍该技术走向商业化的主要因素,因此开发高催化活性和良好稳定性的低成本氧还原催化剂非常重要。基于脱合金法制得的纳米多孔金属是一类新型的宏观尺度纳米结构材料,其独特的开放型孔道结构、优良的导电性和结构的可调控性使其在电催化相关领域具有广泛的应用。本文侧重于讨论纳米多孔金属作为氧还原催化剂时所展示的一系列结构特性,及其在发展新一代高性能一体化燃料电池催化剂中所展示的机会。  相似文献   

3.
采用改进的化学氧化还原法(Hummers法)氧化鳞片石墨, 再超声振荡剥离得到氧化石墨烯(GO)水溶液. 通过聚二烯丙基二甲基氯化铵(PDDA)分子对GO表面功能化, 由于带正电荷的PDDA分子功能化的GO与带负电荷的2-离子间的静电作用, 使Pt离子组装到GO表面, 再通过原位还原被束缚的Pt离子, 同时GO被还原成石墨烯片(GNs), 得Pt/PDDA-GNs催化剂. 相对空白GNs负载的Pt纳米粒子和商业化Pt/C(JM), Pt/PDDA-GNs催化剂有较高的氧还原活性和稳定性. 前者可归因于Pt颗粒尺寸细小和分散度较高, 后者是由于PDDA分子与Pt原子间的电子作用及对Pt颗粒的钉扎作用, 从而减缓了Pt的氧化和迁移.  相似文献   

4.
使用硼氢化钠共还原法制备40% (w)铂/石墨烯电催化剂用于氧还原反应. 通过循环伏安测试发现, 这种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差, 但稳定性有所提高. 在稳定性测试中,铂/石墨烯电催化性能衰减为50%, 较铂/碳(79%)好. X射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用, 这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因. 通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.  相似文献   

5.
The development of methanol-tolerate oxygen reduction reaction(ORR) electrocatalysts is of special significance to direct methanol fuel cells system. Iridium is known for its better methanol tolerance than platinum and able to survive in harsh acidic environment. However, its activity is relatively low and thus the approach to improve Ir's ORR is desired. Herein, bimetallic Ir-Cu nanoparticles(NPs) with controllable Ir/Cu compositions(ca. 1:2 to 4:1, atomic ratio) are synthesized via a galvanic replacement-based chemical method. The as-synthesized Ir-Cu NPs are investigated as ORR catalysts after electrochemically leaching out the surface Cu and forming Ir-skinned structures. Around 2- to 3-fold enhancement in the intrinsic activity has been observed in these Ir-skinned Ir-Cu catalysts compared to Ir counterpart. The approach is demonstrated to be a promising way to prepare efficient Ir ORR catalysts and lower catalyst cost.  相似文献   

6.
以100 nm的Au粒子为核,抗坏血酸为还原剂,H2PtCl6·6H2O为前驱体,合成了Pt包Au核壳结构纳米粒子( Au@ Pt)及其修饰的玻碳(GC)电极(Au@ Pt/GC).采用旋转圆盘电极等常规电化学方法,比较了Au@ Pt/GC和商用碳载铂(Pt/C)修饰的玻碳电极(Pt/C/GC)催化O2还原反应活性及耐甲醇性能,发现Au@ Pt纳米粒子在铂用量很低的情况下,其催化O2还原反应活性仍与商用Pt/C相当,而且还具有优良的耐甲醇性能;其催化O2还原反应机理按O2直接还原成H2O的四电子历程进行.  相似文献   

7.
采用脉冲微波辅助化学还原法制备了质子交换膜燃料电池(PEMFC)用Pt/C 催化剂. 通过透射电镜(TEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构和形貌进行了表征, 并利用循环伏安(CV)、线性扫描(LSV)和恒电位测量等方法评价了催化剂催化氧还原性能. 在此基础上制备了膜电极(MEA)并组装成单电池, 考察了制备的Pt/C 催化剂作为阴极催化剂材料的电催化性能. 结果表明, 脉冲微波辅助化学还原法是一种制备PEMFC催化剂的有效方法, 溶液pH值和微波功率对Pt 颗粒直径和分散有重要影响. TEM和XRD结果显示, 当溶液pH值为10 且微波功率为2 kW时, Pt 纳米粒子较均匀地分散在碳载体上, 粒径分布在1.3-2.4 nm之间, 平均粒径为1.8 nm. CV、LSV和恒电位测试结果表明, 该催化剂电化学比表面积(ESA)为55.6 m2·g-1, 具有良好的催化氧还原反应活性和稳定性. 单电池测试结果表明, 在溶液pH值为10条件下, 微波功率为2 kW时制备的催化剂作阴极催化剂时, 单电池最高功率密度为2.26 W·cm-2·mg-1, 高于微波功率为1 kW时的最高功率密度(2.15 W·cm-2·mg-1)和Johnson Matthey催化剂的最高功率密度(1.89 W·cm-2·mg-1).  相似文献   

8.
采用微波加热和高温碳化技术, 以ZIF-8为前驱体, 在甲醇-水双溶剂体系中先后引入Fe(NO3)3·9H2O和KSCN, 制备了一系列S掺杂的Fe-N-C催化剂(Fe3C/Fe-SAS@SNC), 并通过X射线粉末衍射、 扫描透射电子显微镜和氮气吸附-脱附测试等表征手段进行分析. 结果表明, Fe和S两种元素的合理掺杂使Fe3C/Fe-SAS@SNC催化剂具有明显的分级多孔结构, 比表面积达到673 m2/g, 在酸、 碱电解质中均表现出了优异的氧还原催化性能. 在0.1 mol/L KOH中, Fe3C/Fe-SAS@SNC催化剂的半波电位达到0.880 V(vs. RHE), 高于商业Pt/C催化剂, 且表现出了比商业Pt/C更优的稳定性. 在0.5 mol/L H2SO4中, Fe3C/Fe-SAS@SNC电催化氧还原的性能也与商业Pt/C催化剂相当.  相似文献   

9.
In the light of recent experimental research on the oxygen reduction reaction (ORR) with carbon materials doped with foreign atoms, we study the performance of graphene with different defects on this catalytic reaction. In addition to the reported N‐graphene, it is found that H‐decorated and B‐substituted graphene can also spontaneously promote this chemical reaction. The local high spin density plays the key role, facilitating the adsorption of oxygen and OOH, which is the start of ORR. The source of the high spin density for all of the doped graphene is attributed to unpaired single π electrons. Meanwhile, the newly formed C? H covalent bond introduces a higher barrier to the p electron flow, leading to more localized and higher spin density for H‐decorated graphene. At the same time, larger structural distortion should be avoided, which could impair the induced spin density, such as for P‐substituted graphene.  相似文献   

10.
We report on the probing of the Pt surface for oxygen reduction reaction (ORR) by insertion of Ag. Therefore, PtAg bimetallic nanoparticles were prepared by pulse electrodeposition. In a second step, Ag was electro‐dissolved in acidic media from the particles under formation of Pt skeleton. The ORR activity of these Pt skeleton depends on two factors: (1) on the surface properties of the Pt‐shell and (2) on the electronic as well as geometric influences of the remaining Ag in the particle core. By varying the conditioning procedure prior to measuring the ORR activity, we were able to differentiate between these two effects.  相似文献   

11.
The activity of Pt towards oxygen reduction reaction (ORR) can be enhanced by alloying it with secondary metals. They can be grouped into three different classes: alloys, bimetallics and intermetallics. Although alloys and bimetallics exhibit enhanced performance, often they are limited by metal dissolution and resulted in poor durability. This invokes the need on the development of ordered intermetallics. In this minireview we comprehensively present the recent progress and developments of Pt3X alloys and intermetallics towards ORR. Additionally, major technical challenges and possible future research directions to overcome these challenges are discussed to facilitate further research in this area.  相似文献   

12.
In this study, N,P co‐doped graphene (NPG) was prepared by a one‐step pyrolysis using a mixture of graphene oxide and hexachlorocyclotriphosphazene (HCCP), in which HCCP was used as both the N and P source. Furthermore, it is shown that NPG electrodes, as efficient metal‐free electrocatalysts, have a high onset potential, high current density, and long‐term stability for the oxygen reduction reaction.  相似文献   

13.
For the first time, cobalt particles were electrodeposited on the surface of manganese oxides by cyclic voltammetry (CV) from an aqueous solution of 0.1 M Na2SO4 containing 5 mM CoSO4, and then the samples obtained were characterized by scanning electron microscopy (SEM) and energy dispersive X‐ray analysis (EDAX), respectively. And then, the as‐prepared Co/MnO2‐coated graphite electrode was employed to the oxygen reduction reaction (ORR). Interestingly, the reduction peak potential of ORR on a Co/MnO2‐modified graphite electrode was positively shifted for about 100 mV as compared with that on a MnO2‐modified graphite electrode, indicating that the electrocatalysis of Co/MnO2 composite towards ORR is superior to that of pure MnO2.  相似文献   

14.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

15.
Pt-based alloys are the optimal electrocatalysts for oxygen reduction reaction(ORR) currently. Dealloying of Pt-based alloys has shown to be an effective approach to improving ORR activity. Electrochemical dealloying is controllable for morphology by changing electrochemical parameters but is difficult to scale up due to complex operation and energy consumption. Chemical dealloying is suitable for a large scale but it is not easy to control the morphology because highly corrosive acids(HNO3 or H2SO4) are commonly used. In this work, a facile chemical dealloying method for Pt3Co/C has been employed to synthesize elec-trocatalysts for ORR using weak acids and buffer solutions of different pH, which could slow down the dissolution rate for Co atoms and increase the diffusion time for Pt atoms to improve ORR activity. It can be observed that the mass activities(MA) of the Pt3Co/C alloy after dealloying with H3PO4 and NaH2PO4/Na2HPO4 buffer solution of pH=6 are close to that after electrochemical dealloying process, and are more than two times that of commercial Pt/C. In addition, Pt3Co/C after dealloying with a buffer solution of pH=6 only showed a slight degradation in the half-wave potential and electrochemical surface area(ECSA) after stability test for 5000 cycles, which is more stable than commercial Pt/C. It shows that by controlling pH of the solvent, the ORR activity can be further increased. This facile approach provides a new strategy to control morphology of Pt-based electrocatalysts by chemical dealloying, which can contribute to promising application for cathodic electrocatalysts design of proton exchange membrane fuel cells (PEMFCs).  相似文献   

16.
To analyze the specific roles of anthraquinone‐2‐sulfonate (AQS) and polypyrrole (PPy) layer on oxygen reduction reaction (ORR), the electrocatalytic reduction of oxygen was investigated on the AQS/PPy composite modified graphite electrode. Results show that the enhanced electrocatalytic performance is attributed to the excellent electrocatalytic activity of the immobilized AQS functional groups to mediate two‐electron reduction of O2 to H2O2. The PPy layer may not participate in ORR, but it can further catalyze the two‐electron reduction of H2O2 to produce H2O in the potential range more negative than that the two‐electron reduction of oxygen proceeds efficiently on the AQS sites.  相似文献   

17.
应用电化学去合金法制备了表面覆盖有Pt(Pd)原子层的Pt(Pd)-Cu合金催化剂.研究该催化剂在0.1mol.L-1HClO4酸性溶液中对氧气电化学还原的催化活性,并采用同步辐射反常X-射线衍射法(Anomalous X-ray Diffraction,AXRD)和表面X-射线散射法(Surface X-ray Scattering,SXS)从原子尺度研究了去合金化后催化剂的结构.分析对比纳米颗粒、薄膜和单晶3种不同形式的去合金化Pt-Cu的结构和催化活性以及Pt-Cu和Pd-Cu两种不同合金薄膜的结构和催化活性.结果表明,表面应力是影响催化剂催化活性的关键因素,而应力大小则与去合金化后所形成的表面Pt(Pd)层的厚度相关,材料尺寸和组成元素等都影响表面Pt(Pd)层的厚度.提出可利用调控材料表面的应力来设计高催化活性的催化剂.  相似文献   

18.
N‐doped graphene has become an important support for Pd in both hydrogen storage and catalytic reactions. The molecular orbitals of carbon materials (including graphene, fullerene, and small carbon clusters) and those of the supported Pd species will hybrid much stronger as N dopants are introduced, owing to the increased electrostatic attraction at the interface. This enhances the carbon substrates′ catching force for the supported Pd, preventing its leaching and aggregation in many practical applications. The better dispersion and stabilization of Pd nanoparticles, which are induced by various carbon supports with N‐doping, are pleasing to us and could increase their efficiency and facilitate their recycling during various reaction processes in several fields.  相似文献   

19.
This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.  相似文献   

20.
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of nitrogen‐doped mesoporous carbon spheres (NMCs) was synthesized via a facile dual soft‐templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro)chemical properties of the NMCs have been comprehensively investigated to pave the way for a feasible design of nitrogen‐containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by a high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity, and high nitrogen content, which make it a highly efficient ORR metal‐free catalyst in alkaline solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号