首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silk fibers were carbonized to develop a biomass carbon material as an adsorbent for solid‐phase microextraction. The surface structure of the carbonized silk fibers was characterized by scanning electron microscopy, and the graphitization degree was determined by Raman spectrometry. After carbonization under high temperature, the orderliness and structural regularity of carbon atoms on silk fibers were promoted. Extraction tube packed with carbonized silk fibers was prepared for in‐tube solid‐phase microextraction. Coupled with high performance liquid chromatography, it exhibited good extraction performance for hydrophobic polycyclic aromatic hydrocarbons. Main parameters including sampling volume, sampling rate, methanol content in sample, and desorption time were systematically investigated. Under the optimum conditions, the analysis method was established and it exhibited wide linear range (0.016–20 μg/L) with good linearity (correlation coefficient ≥ 0.9947), low limits of detection (0.005–0.050 μg/L), and high enrichment factors (1189–2775). Relative standard deviations (n = 3) for intraday (≤3.3%) and interday (≤9.6%) tests indicated that the extraction material had satisfactory repeatability. Finally, the analytical method was successfully applied to detect trace polycyclic aromatic hydrocarbons in real water samples, demonstrating its satisfactory practicability.  相似文献   

2.
A mesoporous silica was functionalized by carbon nanotubes to enhance the extraction performance. The mesoporous material was coated on stainless steel wires, and three wires were inserted inside of a polyetheretherketone tube for in‐tube solid‐phase microextraction. The tube was coupled to high‐performance liquid chromatography with diode array detection to obtain online analytical system, then its extraction performance was evaluated using eight polycyclic aromatic hydrocarbons as the targets. In order to good sensitivity and accuracy, four conditions were optimized such as sampling volume, sampling rate, methanol content in the sample, and desorption time. Under the optimum conditions, an online analytical method was established and exhibited low limits of detection from 0.005 to 0.050 µg/L, wide linear range of 0.016‐20.00 µg/L with acceptable correlation coefficients in 0.9921‐0.9999, as well as large enrichment factors in the range of 311‐2412. The method was successfully applied to determine trace polycyclic aromatic hydrocarbons in some real water samples including, two kinds of bottled water, tap water, and river water, a few polycyclic aromatic hydrocarbons were detected but none quantified in these samples.  相似文献   

3.
Cotton fiber is an environmentally friendly and natural material with a certain extraction capacity, while its enrichment ability is poor. In order to improve the extraction efficiency of cotton fibers, it was carbonized to form a layer of amorphous carbon as the sorbent by a simple carbonization method. Carbonized cotton fibers were filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The carbonization time was investigated to obtain high extraction efficiency. Coupled to high‐performance liquid chromatography, the extraction tube was evaluated with polycyclic aromatic hydrocarbons, estrogens and phthalates, and it exhibited best extraction efficiency for polycyclic aromatic hydrocarbons. Under the optimum conditions, an online analysis method for several polycyclic aromatic hydrocarbons was established with large linear ranges (0.016–0.20 μg/L), low limits of detection (0.005–0.020 μg/L), and high enrichment factors (948–2874). Analysis method was successfully applied to the detection of targets in the real samples and shown satisfactory durability and chemical stability. Moreover, the relative recoveries ranged from 82 to 119.2%, which demonstrated the applicability of carbonized cotton fibers in sample preparation. Compared with other reported methods, the proposed method provided shorter extraction time, higher enrichment factors, comparable limits of detection, and recoveries.  相似文献   

4.
A solid‐phase microextraction with carbon nanospheres coated fiber coupled with gas chromatographic detection was established for the determination of eight polycyclic aromatic hydrocarbons (naphthalene, biphenyl, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, and pyrene) in water and soil samples. The experimental parameters (extraction temperature, extraction time, stirring rate, headspace volume, salt content, and desorption temperature) which affect the extraction efficiency were studied. Under the optimized conditions, good linearity between the peak areas and the concentrations of the analytes was achieved in the concentration range of 0.5‐300 ng/mL for water samples, and in the concentration range of 6.0‐2700 ng/g for soil samples. The detection limits for the analytes were in the range of 0.12‐0.45 ng/mL for water samples, and in the range of 1.53‐2.70 ng/g for soil samples. The method recoveries of the polycyclic aromatic hydrocarbons for spiked water samples were 80.10‐120.1% with relative standard deviations less than 13.9%. The method recoveries of the analytes for spiked soil samples were 80.40‐119.6% with relative standard deviations less than 14.4%. The fiber was reused over 100 times without a significant loss of extraction efficiency.  相似文献   

5.
Nano‐molybdenum trioxide was prepared from nano‐molybdenum disulfide by simple firing in muffle furnace. Nano‐molybdenum trioxide was used as the extraction coating on the stainless steel wire. Four wires were filled in a polyetheretherketone tube to get an extraction tube. The tube was connected to the six‐port valve of a high performance liquid chromatograph, and the online analysis system was constructed. Extraction selectivity of the tube for different types of compounds, including polycyclic aromatic hydrocarbons, plasticizers, estrogens, anilines and neonicotinoids, was studied. Good enrichment ability for polycyclic aromatic hydrocarbons, but the extraction efficiency of others was not satisfactory. Using eight polycyclic aromatic hydrocarbons as the targets, an analytical method was established after optimizing main factors such as sampling volume, sampling rate, methanol content, and desorption time. The established method exhibited wide linear range to 0.016–20.00 μg/L and low limits of detection to 0.005 μg/L, and the enrichment factors can be up to 2443. The method was applied to the detection of trace polycyclic aromatic hydrocarbons in tap water and river water, and a good recovery was obtained. The tube showed good durability and chemical stability, and it still remained good extraction effect after more than 140 run.  相似文献   

6.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

7.
Natural cotton fiber was applied as a green extraction material for in‐tube solid‐phase microextraction. Cotton fibers were characterized by scanning electron microscope. A bundle of cotton fibers (685 mg, 20 cm) was directly packed into a polyetheretherketone tube (i.d. 0.75 mm) to get the extraction device. It was connected into high performance liquid chromatography, building an online extraction and dectection system. Through the online analysis system, several polycyclic aromatic hydrocarbons were used as the targets to evaluate the extraction performace of the device. In order to get high extraction efficiency and sensitivity, the extraction and desorption conditions were optimized. Under the optimum conditions, the sensitive analysis method was established, and provided low limits of detection of 0.02 and 0.05 μg/L, good linearity ranges of 0.06–15 and 0.16–15 μg/L, as well as high enrichment factors of 176–1868. The method was applied to the online determination of trace polycyclic aromatic hydrocarbons in snow water and river water, and the relative recoveries corresponding to 2 and 5 μg/L were in the range of 80–116%. The repeatability of extraction and preparation of the device was investigated and the relative standard deviations (n = 3) were less than 3.6 and 5.2%.  相似文献   

8.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

9.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

10.
Basalt fibers were functionalized with gold nanoparticles and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. An in‐tube solid‐phase microextraction device was developed by packing the functionalized basalt fibers in a polyether ether ketone tube. The device was connected into high performance liquid chromatography equipment with a diode array detector to build online enrichment and analysis system. Eight polycyclic aromatic hydrocarbons were used as model analytes, important factors including sampling rate, sampling volume, organic solvent content in sample, and desorption time were investigated. Linear range (0.01–20 μg/L), detection limits (0.003–0.015 μg/L), and enrichment factors (130–1628) were given by the online analysis method. Relative standard deviations (= 5) of extraction repeatability on one tube and tube‐to‐tube repeatability were less than 5.2 and 14.7%, respectively. The analysis method was applied to detect polycyclic aromatic hydrocarbons in environmental water samples, and relative recoveries ranged from 87 to 128%.  相似文献   

11.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

12.
To enhance the extraction performance, a mesoporous silica was modified with ordered mesoporous carbon for solid‐phase microextraction. Three stainless‐steel wires coated with the mesoporous material were placed in a polyetheretherketone tube for getting an extraction tube. The tube was coupled to high‐performance liquid chromatography with diode array detector, and the online analysis system was constructed. Then its extraction performance was evaluated using hydrophobic polycyclic aromatic hydrocarbons, phthalates, and hydrophilic neonicotinoids. The best selectivity was presented for polycyclic aromatic hydrocarbons. Several main conditions were optimized such as sampling volume, sampling rate, methanol concentration in the sample, and desorption time, a rapid and sensitive analytical method was established toward polycyclic aromatic hydrocarbons. The analytical method exhibited wide linear range from 0.017 to 15 µg/L with acceptable correlation coefficients more than 0.9990, limits of detection in 0.005‐0.020 µg/L, limits of quantification ranging from 0.017 to 0.066 µg/L as well as large enrichment factors of 377‐2314. It was successfully applied to detect trace polycyclic aromatic hydrocarbons in some real water samples including tap water, snow water, and domestic sewage.  相似文献   

13.
A bonding method was developed for coating molybdenum oxides onto a steel wire substrate, which was used as a solid‐phase microextraction fiber, was coupled with gas chromatography. Based on the characterization, it is found that the as‐prepared molybdenum oxides material contained a nanobelt structure with a uniform size and good dispersibility. In addition, there were a large number of small protrusions on the surface of the nanobelts. These characteristics provided a large specific surface area for extraction. Molybdenum oxides exhibited a high extraction selectivity for polycyclic aromatic hydrocarbons owing to its moderate coordination. After the optimization of the factors, method detection limits of < 1.25 μg/L were achieved, and the calibration curves were linear within the range of 2–600 μg/L. In addition, repeatability was demonstrated, and the relative standard deviation < 6.4%. The molybdenum oxides coating had a high scratch resistance, which could effectively prevent coating wear and failure. Combined with the high thermal and chemical stability, the service life of the coating was improved and could be used 150 times without a significant reduction in the extraction performance. Finally, the as‐prepared fiber had a comparable extraction capacity and higher partition coefficients that those of commercial polyacrylate fibers.  相似文献   

14.
Although an efficient and stable fiber coating is essential for the development of solid‐phase microextraction technique, it remains a challenging prospect. Herein, an inorganic nanocomposite material Ag2S@ZnS was prepared and used as a coating for fibers to detect polycyclic aromatic hydrocarbons in water samples in combination with a GC with flame ionization detector. Compared with a single ZnS material, the Ag2S@ZnS composite shows many uneven nano‐protrusions on the surface of the microspheres. In conjunction with the relatively scattered microstructure of the coating and the effective anion‐π interaction formed between ZnS and the hydrocarbons, it has a large specific surface area, fast diffusion of the target molecule on its surface, and appropriate adsorption of the target molecules; therefore, it exhibits good extraction efficiency for the hydrocarbons. Under optimal conditions, the proposed analytical method exhibits superior performance with good linearity (0.01–500 µg/L) and low limits of detection (0.001–0.200 µg/L). Combined with high thermal, chemical, and mechanical stability, the service life of the coating was improved and could be used 200 times without a significant reduction in the extraction performance, and at least 2000 extraction–desorption cycles can be achieved. Satisfactory results were also obtained for the real samples.  相似文献   

15.
A solid‐phase microextraction coupled with gas chromatography and mass spectrometry method has been developed for the determination of ten nitrated polycyclic aromatic hydrocarbons in water samples. Five different kinds of commerical fibers were used to compare the extraction efficiency, including 65 μm polydimethylsiloxane/divinylbenzene, 100 μm polydimethylsiloxane, 30 μm polydimethylsiloxane, 7 μm polydimethylsiloxane, and 85 μm polyacrylate fibers. Five factors were also selected to optimize conditions, including extraction temperature, time, stirring speed, salt concentration, and headspace volume. Taguchi design was applied to design the experiments and obtain the best parameters. The results show that 65 μm polydimethylsiloxane/divinylbenzene fiber directly immersed into aqueous solution for 35 min at 55°C with a constant stirring rate of 1150 rpm were the optimal conditions. Under these conditions, the limits of quantification were 0.007–0.063 μg/L, and the relative standard deviation based on six replicates ranged from 2.8 to 9.5%. The spiked recoveries ranged from 69.1 to 110.1%. Intra‐ and inter day relative standard deviations at three concentration levels were less than 12%, and the recoveries were 66.4–111.5%. The proposed method is reliable for analyzing nitrated polycyclic aromatic hydrocarbons in different water samples.  相似文献   

16.
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless‐steel wire and used as a solid‐phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1–30, 0.03–30, and 0.01–30 μg/L) with satisfactory correlation coefficients (0.9922–0.9966) and low detection limits (0.003–0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid‐phase microextraction.  相似文献   

17.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

18.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

19.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

20.
In this work, a polydimethylsiloxane/divinylbenzene fiber overcoated with a layer of polydimethylsiloxane was evaluated as analytical sampling tool for the first time in human urine. Urinary polycyclic aromatic hydrocarbons with 2–6 aromatic rings were considered as target compounds. The analyte uptake in kinetic and thermodynamic regime was evaluated and compared to the performances of polydimethylsiloxane/divinylbenzene and polydimethylsiloxane fibers. The assessment of the robustness and endurance of the overcoated fiber was carried out by direct immersion solid‐phase microextraction in undiluted urine performing up to 120 consecutive extractions. The overcoated fiber was then used to develop a fast and easy direct immersion solid‐phase microextraction with gas chromatography and triple quadrupole mass spectrometry protocol for the quantification of the target polycyclic aromatic hydrocarbons. The attained values of accuracy and precision were 75–114% and 2–19%, respectively, while the limits of quantification ranged between 0.05 and 1 ng/L. The proposed protocol was applied to the screening of urine samples collected from smoking and nonsmoking volunteers. The successful results obtained by using the overcoated fiber create not only new alternatives for polycyclic aromatic hydrocarbon exposure assessment but also new perspectives for the application of direct immersion solid‐phase microextraction to the analysis of bioclinical matrixes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号