首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

2.
Nano‐molybdenum trioxide was prepared from nano‐molybdenum disulfide by simple firing in muffle furnace. Nano‐molybdenum trioxide was used as the extraction coating on the stainless steel wire. Four wires were filled in a polyetheretherketone tube to get an extraction tube. The tube was connected to the six‐port valve of a high performance liquid chromatograph, and the online analysis system was constructed. Extraction selectivity of the tube for different types of compounds, including polycyclic aromatic hydrocarbons, plasticizers, estrogens, anilines and neonicotinoids, was studied. Good enrichment ability for polycyclic aromatic hydrocarbons, but the extraction efficiency of others was not satisfactory. Using eight polycyclic aromatic hydrocarbons as the targets, an analytical method was established after optimizing main factors such as sampling volume, sampling rate, methanol content, and desorption time. The established method exhibited wide linear range to 0.016–20.00 μg/L and low limits of detection to 0.005 μg/L, and the enrichment factors can be up to 2443. The method was applied to the detection of trace polycyclic aromatic hydrocarbons in tap water and river water, and a good recovery was obtained. The tube showed good durability and chemical stability, and it still remained good extraction effect after more than 140 run.  相似文献   

3.
A mesoporous silica was functionalized by carbon nanotubes to enhance the extraction performance. The mesoporous material was coated on stainless steel wires, and three wires were inserted inside of a polyetheretherketone tube for in‐tube solid‐phase microextraction. The tube was coupled to high‐performance liquid chromatography with diode array detection to obtain online analytical system, then its extraction performance was evaluated using eight polycyclic aromatic hydrocarbons as the targets. In order to good sensitivity and accuracy, four conditions were optimized such as sampling volume, sampling rate, methanol content in the sample, and desorption time. Under the optimum conditions, an online analytical method was established and exhibited low limits of detection from 0.005 to 0.050 µg/L, wide linear range of 0.016‐20.00 µg/L with acceptable correlation coefficients in 0.9921‐0.9999, as well as large enrichment factors in the range of 311‐2412. The method was successfully applied to determine trace polycyclic aromatic hydrocarbons in some real water samples including, two kinds of bottled water, tap water, and river water, a few polycyclic aromatic hydrocarbons were detected but none quantified in these samples.  相似文献   

4.
To enhance the extraction performance, a mesoporous silica was modified with ordered mesoporous carbon for solid‐phase microextraction. Three stainless‐steel wires coated with the mesoporous material were placed in a polyetheretherketone tube for getting an extraction tube. The tube was coupled to high‐performance liquid chromatography with diode array detector, and the online analysis system was constructed. Then its extraction performance was evaluated using hydrophobic polycyclic aromatic hydrocarbons, phthalates, and hydrophilic neonicotinoids. The best selectivity was presented for polycyclic aromatic hydrocarbons. Several main conditions were optimized such as sampling volume, sampling rate, methanol concentration in the sample, and desorption time, a rapid and sensitive analytical method was established toward polycyclic aromatic hydrocarbons. The analytical method exhibited wide linear range from 0.017 to 15 µg/L with acceptable correlation coefficients more than 0.9990, limits of detection in 0.005‐0.020 µg/L, limits of quantification ranging from 0.017 to 0.066 µg/L as well as large enrichment factors of 377‐2314. It was successfully applied to detect trace polycyclic aromatic hydrocarbons in some real water samples including tap water, snow water, and domestic sewage.  相似文献   

5.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

6.
Natural cotton fiber was applied as a green extraction material for in‐tube solid‐phase microextraction. Cotton fibers were characterized by scanning electron microscope. A bundle of cotton fibers (685 mg, 20 cm) was directly packed into a polyetheretherketone tube (i.d. 0.75 mm) to get the extraction device. It was connected into high performance liquid chromatography, building an online extraction and dectection system. Through the online analysis system, several polycyclic aromatic hydrocarbons were used as the targets to evaluate the extraction performace of the device. In order to get high extraction efficiency and sensitivity, the extraction and desorption conditions were optimized. Under the optimum conditions, the sensitive analysis method was established, and provided low limits of detection of 0.02 and 0.05 μg/L, good linearity ranges of 0.06–15 and 0.16–15 μg/L, as well as high enrichment factors of 176–1868. The method was applied to the online determination of trace polycyclic aromatic hydrocarbons in snow water and river water, and the relative recoveries corresponding to 2 and 5 μg/L were in the range of 80–116%. The repeatability of extraction and preparation of the device was investigated and the relative standard deviations (n = 3) were less than 3.6 and 5.2%.  相似文献   

7.
Basalt fibers were functionalized with gold nanoparticles and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. An in‐tube solid‐phase microextraction device was developed by packing the functionalized basalt fibers in a polyether ether ketone tube. The device was connected into high performance liquid chromatography equipment with a diode array detector to build online enrichment and analysis system. Eight polycyclic aromatic hydrocarbons were used as model analytes, important factors including sampling rate, sampling volume, organic solvent content in sample, and desorption time were investigated. Linear range (0.01–20 μg/L), detection limits (0.003–0.015 μg/L), and enrichment factors (130–1628) were given by the online analysis method. Relative standard deviations (= 5) of extraction repeatability on one tube and tube‐to‐tube repeatability were less than 5.2 and 14.7%, respectively. The analysis method was applied to detect polycyclic aromatic hydrocarbons in environmental water samples, and relative recoveries ranged from 87 to 128%.  相似文献   

8.
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid‐phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high‐performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π–π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4–32 and 1.2–95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples—well water, tap water, soil, vegetable, and barbequed meat (kebab)—with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability.  相似文献   

9.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

10.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

11.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

12.
Silk fibers were carbonized to develop a biomass carbon material as an adsorbent for solid‐phase microextraction. The surface structure of the carbonized silk fibers was characterized by scanning electron microscopy, and the graphitization degree was determined by Raman spectrometry. After carbonization under high temperature, the orderliness and structural regularity of carbon atoms on silk fibers were promoted. Extraction tube packed with carbonized silk fibers was prepared for in‐tube solid‐phase microextraction. Coupled with high performance liquid chromatography, it exhibited good extraction performance for hydrophobic polycyclic aromatic hydrocarbons. Main parameters including sampling volume, sampling rate, methanol content in sample, and desorption time were systematically investigated. Under the optimum conditions, the analysis method was established and it exhibited wide linear range (0.016–20 μg/L) with good linearity (correlation coefficient ≥ 0.9947), low limits of detection (0.005–0.050 μg/L), and high enrichment factors (1189–2775). Relative standard deviations (n = 3) for intraday (≤3.3%) and interday (≤9.6%) tests indicated that the extraction material had satisfactory repeatability. Finally, the analytical method was successfully applied to detect trace polycyclic aromatic hydrocarbons in real water samples, demonstrating its satisfactory practicability.  相似文献   

13.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

14.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

15.
Cotton fiber is an environmentally friendly and natural material with a certain extraction capacity, while its enrichment ability is poor. In order to improve the extraction efficiency of cotton fibers, it was carbonized to form a layer of amorphous carbon as the sorbent by a simple carbonization method. Carbonized cotton fibers were filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The carbonization time was investigated to obtain high extraction efficiency. Coupled to high‐performance liquid chromatography, the extraction tube was evaluated with polycyclic aromatic hydrocarbons, estrogens and phthalates, and it exhibited best extraction efficiency for polycyclic aromatic hydrocarbons. Under the optimum conditions, an online analysis method for several polycyclic aromatic hydrocarbons was established with large linear ranges (0.016–0.20 μg/L), low limits of detection (0.005–0.020 μg/L), and high enrichment factors (948–2874). Analysis method was successfully applied to the detection of targets in the real samples and shown satisfactory durability and chemical stability. Moreover, the relative recoveries ranged from 82 to 119.2%, which demonstrated the applicability of carbonized cotton fibers in sample preparation. Compared with other reported methods, the proposed method provided shorter extraction time, higher enrichment factors, comparable limits of detection, and recoveries.  相似文献   

16.
Polyetheretherketone tube is a better substrate for in‐tube solid‐phase microextraction than fused‐silica capillary and metal tube because of its resistance to high pressure and good flexibility. It was modified with a nanostructured silver coating, and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. It was connected into high‐performance liquid chromatography equipment to build the online analysis system by replacing the sample loop of a six‐port injection valve. To get the highest extraction capacity, the preparation conditions of the coating was investigated. Important extraction conditions including length of tube, sample volume, and desorption time were optimized using eight polycyclic aromatic hydrocarbons as model analytes. The tube exhibits excellent extraction efficiency toward them, with enrichment factors from 52 to 363. The online analysis method provides good linearity (0.5–100 or 1.0–100 μg/L) and low detection limits (0.15–0.30 μg/L). It has been used to determine polycyclic aromatic hydrocarbons in water samples, with relative recoveries in the range of 92.3–120%. The tube showed highest extraction ability for polycyclic aromatic hydrocarbons, higher extraction ability for hydrophobic phthalates and anilines, and almost no extraction ability for low hydrophobic phenols, due to the possible extraction mechanism including hydrophobic and electron‐rich element‐metal interactions.  相似文献   

17.
Polyaniline coated cigarette filters were successfully synthesized and used as a solid‐phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π–π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5–10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost‐effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85–98%) and a relative standard deviation <10%.  相似文献   

18.
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound‐assisted extraction and solid‐phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n‐hexane were used to achieve better results. The average recovery was 67–112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02–0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high‐fat (fish, shrimp, crab, shellfish) biological samples.  相似文献   

19.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

20.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号