首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous metal oxides (MMOs) have been demonstrated great potential in various applications. Up to now, the direct synthesis of MMOs is still limited to the solvent induced inorganic-organic self-assembly process. Here, we develop a facile, general, and high throughput solvent-free self-assembly strategy to synthesize a series of MMOs including single-component MMOs and multi-component MMOs (e.g., doped MMOs, composite MMOs, and polymetallic oxide) with high crystallinity and remarkable porous properties by grinding and heating raw materials. Compared with the traditional solution self-assembly process, the avoidance of solvents in this method not only greatly increases the yield of target products and synthesis efficiency, but also reduces the environmental pollution and the consumption of cost and energy. We believe the presented approach will pave a new avenue for scalable production of advanced mesoporous materials for various applications.  相似文献   

2.
A bottom‐up synthetic approach was developed for the preparation of mesoporous transition‐metal‐oxide/noble‐metal hybrid catalysts through ligand‐assisted co‐assembly of amphiphilic block‐copolymer micelles and polymer‐tethered noble‐metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble‐metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble‐metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble‐metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.  相似文献   

3.
The development of a general strategy for synthesizing hierarchical porous transition‐metal oxide and chalcogenide mesoporous nanotubes, is still highly challenging. Herein we present a facile self‐template strategy to synthesize Co3O4 mesoporous nanotubes with outstanding performances in both the electrocatalytic oxygen‐evolution reaction (OER) and Li‐ion battery via the thermal‐oxidation‐induced transformation of cheap and easily‐prepared Co‐Asp(cobalt–aspartic acid) nanowires. The initially formed thin layers on the precursor surfaces, oxygen‐induced outward diffusion of interior precursors, the gas release of organic oxidation, and subsequent Kirkendall effect are important for the appearance of the mesoporous nanotubes. This self‐template strategy of low‐cost precursors is found to be a versatile method to prepare other functional mesoporous nanotubes of transition‐metal oxides and chalcogenides, such as NiO, NiCo2O4, Mn5O8, CoS2 and CoSe2.  相似文献   

4.
5.
Materials with ordered mesoporous structures have shown great potential in a wide range of applications. In particular, the combination of mesoporosity, low dimensionality, and well‐defined morphology in nanostructures may exhibit even more attractive features. However, the synthesis of such structures is still challenging in polar solvents. Herein, we report the preparation of ultrathin two‐dimensional (2D) nanoflakes of transition‐metal phosphates, including FePO4, Mn3(PO4)2, and Co3(PO4)2, with highly ordered mesoporous structures in a nonpolar solvent. The as‐obtained nanoflakes with thicknesses of about 3.7 nm are constructed from a single layer of parallel‐packed pore channels. These uniquely ordered mesoporous 2D nanostructures may originate from the 2D assembly of cylindrical micelles formed by the amphiphilic precursors in the nonpolar solvent. The 2D mesoporous FePO4 nanoflakes were used as the cathode for a lithium‐ion battery, which exhibits excellent stability and high rate capabilities.  相似文献   

6.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   

7.
8.
Mesoporous iron phosphate (FePO4) was synthesized through assembly of polymeric micelles made of asymmetric triblock co‐polymer (polystyrene‐b‐poly‐2‐vinylpyridine‐b‐ethylene oxide; PS‐PVP‐PEO). The phosphoric acid solution stimulates the formation of micelles with core–shell‐corona architecture. The negatively charged PO43? ions dissolved in the solution strongly interact with the positively charged PVP+ units through an electrostatic attraction. Also, the presence of PO43? ions realizes a bridge between the micelle surface and the metal ions. The removal of polymeric template forms the robust framework of iron phosphate with 30 nm pore diameter and 15 nm wall thickness. Our method is applicable to other mesoporous metal phosphates by changing metal sources. The obtained materials were fully characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption–desorption, Raman spectroscope, and other techniques.  相似文献   

9.
The cost-efficient ZnMnO3 has attracted increasing attention as a prospective anode candidate for advanced lithium-ion batteries (LIBs) owing to its resourceful abundance, large lithium storage capacity and low operating voltage. However, its practical application is still seriously limited by the modest cycling and rate performances. Herein, a facile design to scalable synthesize unique one-dimensional (1D) mesoporous ZnMnO3 nanorods (ZMO-NRs) composed of nanoscale particles (≈11 nm) is reported. The 1D mesoporous structure and nanoscale building blocks of the ZMO-NRs effectively promote the transport of ions/electrons, accommodate severe volume changes, and expose more active sites for lithium storage. Benefiting from these appealing structural merits, the obtained ZMO-NRs anode exhibits excellent rate behavior (≈454 mAh g−1 at 2 A g−1) and ultra-long term cyclic performance (≈949.7 mAh g−1 even over 500 cycles at 0.5 A g−1) for efficient lithium storage. Additionally, the LiNi0.8Co0.1Mn0.1O2//ZMO-NRs full cell presents a practical energy density (≈192.2 Wh kg−1) and impressive cyclability with approximately 91 % capacity retention over 110 cycles. This highlights that the ZMO-NRs product is a highly promising high-rate and stable electrode candidate towards advanced LIBs in electronic devices and sustainable energy storage applications.  相似文献   

10.
Amorphous Si (a‐Si) shows potential advantages over crystalline Si (c‐Si) in lithium‐ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a‐Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a‐Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g?1 at 3 A g?1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a‐Si and c‐Si anodes clearly supports the advantages of a‐Si in lithium‐ion batteries.  相似文献   

11.
12.
Herein, to mimic complex natural system, polyelectrolyte multilayer (PEM)‐coated mesoporous silica nanoreactors were used to compartmentalize two different artificial enzymes. PEMs coated on the surface of mesoporous silica could serve as a permeable membrane to control the flow of molecules. When assembling hemin on the surface of mesoporous silica, the hemin‐based mesoporous silica system possessed remarkable peroxidase‐like activity, especially at physiological pH, and could be recycled more easily than traditional graphene–hemin nanocompounds. The hope is that these new findings may pave the way for exploring novel nanoreactors to achieve compartmentalization of nanozymes and applying artificial cascade catalytic systems to mimic cell organelles or important biochemical transformations  相似文献   

13.
Mesoporous Co3O4 nanosheets (Co3O4‐NS) and nitrogen‐doped reduced graphene oxide (N‐rGO) are synthesized by a facile hydrothermal approach, and the N‐rGO/Co3O4‐NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X‐ray photoelectron spectroscopy (XPS), and TEM. The lithium‐storage properties of N‐rGO/Co3O4‐NS composites are evaluated in a half‐cell assembly to ascertain their suitability as a negative electrode for lithium‐ion battery applications. The 2D/2D nanostructured mesoporous N‐rGO/Co3O4‐NS composite delivered a reversible capacity of about 1305 and 1501 mAh g?1 at a current density of 80 mA g?1 for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N‐rGO/Co3O4‐NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet‐like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N‐rGO and carbon shells in Co3O4‐NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex‐situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage.  相似文献   

14.
A promising family of mixed transition‐metal oxides (MTMOs) (designated as AxB3‐xO4; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non‐stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low‐cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro‐/nanostructures, along with their applications as electrode materials for lithium‐ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal–air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next‐generation electrochemical energy storage/conversion systems are also presented.  相似文献   

15.
The Preyssler polyoxoanion, [NaP5W30O110]14? ({P5W30}), is used as a platform for evaluating the role of nonbridging cations in the formation of transition‐metal‐bridged polyoxometalate (POM) coordination frameworks. Specifically, the assembly architecture of Co2+‐bridged frameworks is shown to be dependent on the identity and amount of alkali or alkaline‐earth cations present during crystallization. The inclusion of Li+, Na+, K+, Mg2+, or Ca2+ in the framework synthesis is used to selectively synthesize five different Co2+‐bridged {P5W30} structures. The influence of the competition between K+ and Co2+ for binding to {P5W30} in dictating framework assembly is evaluated. The role of ion pairing on framework assembly structure and available void volume is discussed. Overall, these results provide insight into factors governing the ability to achieve controlled assembly of POM‐based coordination networks.  相似文献   

16.
17.
18.
19.
In this work, we put forward a facile yet efficient room‐temperature synthetic methodology for the smart fabrication of mesoporous nanocrystalline ZnMn2O4 in macro‐quality from the birnessite‐type MnO2 phase. A plausible reduction/ion exchange/re‐crystallization mechanism is tentatively proposed herein for the scalable synthesis of the spinel phase ZnMn2O4. When utilized as a high‐performance anode for advanced Li‐ion battery (LIB) application, the as‐synthesized nanocrystalline ZnMn2O4 delivered an excellent discharge capacity of approximately 1288 mAh g?1 on the first cycle at a current density of 400 mA g?1, and exhibited an outstanding cycling durability, rate capability, and coulombic efficiency, benefiting from its mesoporous and nanoscale structure, which strongly highlighted its great potential in next‐generation LIBs. Furthermore, the strategy developed here is very simple and of great importance for large‐scale industrial production.  相似文献   

20.
Guiding the lithium ion (Li‐ion) transport for homogeneous, dispersive distribution is crucial for dendrite‐free Li anodes with high current density and long‐term cyclability, but remains challenging for the unavailable well‐designed nanostructures. Herein, we propose a two‐dimensional (2D) heterostructure composed of defective graphene oxide (GO) clipped on mesoporous polypyrrole (mPPy) as a dual‐functional Li‐ion redistributor to regulate the stepwise Li‐ion distribution and Li deposition for extremely stable, dendrite‐free Li anodes. Owing to the synergy between the Li‐ion transport nanochannels of mPPy and the Li‐ion nanosieves of defective GO, the 2D mPPy‐GO heterostructure achieves ultralong cycling stability (1000 cycles), even tests at 0 and 50 °C, and an ultralow overpotential of 70 mV at a high current density of 10.0 mA cm?2, outperforming most reported Li anodes. Furthermore, mPPy‐GO‐Li/LiCoO2 full batteries demonstrate remarkably enhanced performance with a capacity retention of >90 % after 450 cycles. Therefore, this work opens many opportunities for creating 2D heterostructures for high‐energy‐density Li metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号