首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroreduction of CO2 to CO powered by renewable electricity is a possible alternative to synthesizing CO from fossil fuel. However, it is very hard to achieve high current density at high faradaic efficiency (FE). Here, the first use of N,P-co-doped carbon aerogels (NPCA) to boost CO2 reduction to CO is presented. The FE of CO could reach 99.1 % with a partial current density of −143.6 mA cm−2, which is one of the highest current densities to date. NPCA has higher electrochemical active area and overall electronic conductivity than that of N- or P-doped carbon aerogels, which favors electron transfer from CO2 to its radical anion or other key intermediates. By control experiments and theoretical calculations, it is found that the pyridinic N was very active for CO2 reduction to CO, and co-doping of P with N hinder the hydrogen evolution reaction (HER) significantly, and thus the both current density and FE are very high.  相似文献   

2.
Ni,N‐doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen‐coordinated, single Ni atom active sites. However, experimentally confirming Ni?N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile‐derived Ni,N‐doped carbon electrocatalysts (Ni‐PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X‐ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square‐planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.  相似文献   

3.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen‐rich metal–organic framework (Zn‐MOF‐74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of ?0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at ?0.55 V vs. RHE, one of the highest values among NPC‐based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost‐effective alternatives to noble‐metal CO2RR electrocatalysts for practical applications.  相似文献   

4.
Single‐atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single‐atom electrode greatly limit their performance. Herein, we prepared a nickel single‐atom electrode consisting of isolated, high‐density and low‐valent nickel(I) sites anchored on a self‐standing N‐doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon‐fiber paper. The combination of single‐atom nickel(I) sites and self‐standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d‐band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single‐nickel‐atom electrode exhibits a specific current density of ?32.87 mA cm?2 and turnover frequency of 1962 h?1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

5.
Photo/electrochemical CO2 splitting is impeded by the low cost‐effective catalysts for key reactions: CO2 reduction (CDRR) and water oxidation. A porous silicon and nitrogen co‐doped carbon (SiNC) nanomaterial by a facile pyrolyzation was developed as a metal‐free bifunctional electrocatalyst. CO2‐to‐CO and oxygen evolution (OER) partial current density under neutral conditions were enhanced by two orders of magnitude in the Tafel regime on SiNC relative to single‐doped comparisons beyond their specific area gap. The photovoltaic‐driven CO2 splitting device with SiNC electrodes imitating photosynthesis yielded an overall solar‐to‐chemical efficiency of advanced 12.5 % (by multiplying energy efficiency of CO2 splitting cell and photovoltaic device) at only 650 mV overpotential. Mechanism studies suggested the elastic electron structure of ?Si(O)?C?N? unit in SiNC as the highly active site for CDRR and OER simultaneously by lowering the free energy of CDRR and OER intermediates adsorption.  相似文献   

6.
Electrochemical reduction of CO2 into value‐added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal–organic frameworks as the carbon precursor, and initial work on CO2 electroreduction using the MoP‐based catalyst were carried out. It was discovered that MoP nanoparticles supported on In‐doped porous carbon had outstanding performance for CO2 reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm?2, respectively, when using ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In2O3 cooperated very well in catalyzing the CO2 electroreduction.  相似文献   

7.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

8.
The development of functional porous carbon with high CO2/N2 selectivity is of great importance for CO2 capture. In this paper, a type of porous carbon with doped pyridinic sites (termed MOFC) was prepared from the carbonization of a pyridyl‐ligand based MOF. Four MOFCs derived from different carbonizing temperatures were prepared. Structural studies revealed high contents of pyridinic‐N groups and nearly the same pore‐size distributions for these MOFCs. Gas‐sorption studies revealed outstanding CO2 uptake at low pressures and room temperature. Owing to the high content of pyridinic‐N groups, the CO2/N2 selectivity on these MOFCs exhibits values of about 40–50, which are among the top values in carbon materials. Further correlation studies demonstrated that the CO2/N2 selectivities show a positive linear relationship with the surface density of pyridinic‐N groups, thus validating the synergistic effect of the doped pyridinic‐N groups on CO2 adsorption selectivity.  相似文献   

9.
The typical preparation route of carbon‐supported metallic catalyst is complex and uneconomical. Herein, we reported a thiol‐assisted one‐pot method by using 3‐mercaptopropionic acid (MPA) to synthesize carbon‐supported metal nanoparticles catalysts for efficient electrocatalytic reduction of carbon dioxide (CO2RR). We found that the synthesized Au?MPA/C catalyst achieves a maximum CO faradaic efficiency (FE) of 96.2% with its partial current density of ?11.4 mA/cm2, which is much higher than that over Au foil or MPA‐free carbon‐supported Au (Au/C). The performance improvement in CO2RR over the catalyst is probably derived from the good dispersion of Au nanoparticles and the surface modification of the catalyst caused by the specific interaction between Au nanoparticles and MPA. This thiol‐assisted method can be also extended to synthesize Ag?MPA/C with enhanced CO2RR performance.  相似文献   

10.
Electroreduction of CO2 to liquid fuels such as ethanol and n‐propanol, powered by renewable electricity, offers a promising strategy for controlling the global carbon balance and addressing the need for the storage of intermittent renewable energy. In this work, we discovered that the composite composed of nitrogen‐doped graphene quantum dots (NGQ) on CuO‐derived Cu nanorods (NGQ/Cu‐nr) was an outstanding electrocatalyst for the reduction of CO2 to ethanol and n‐propanol. The Faradaic efficiency (FE) of C2+ alcohols could reach 52.4 % with a total current density of 282.1 mA cm?2. This is the highest FE for C2+ alcohols with a commercial current density to date. Control experiments and DFT studies show that the NGQ/Cu‐nr could provide dual catalytic active sites and could stabilize the CH2CHO intermediate to enhance the FE of alcohols significantly through further carbon protonation. The NGQ and Cu‐nr had excellent synergistic effects for accelerating the reduction of CO2 to alcohols.  相似文献   

11.
Electrochemical conversion of CO2 into valued products is one of the most important issues but remains a great challenge in chemistry. Herein, we report a novel synthetic approach involving prolonged thermal pyrolysis of hemin and melamine molecules on graphene for the fabrication of a robust and efficient single‐iron‐atom electrocatalyst for electrochemical CO2 reduction. The single‐atom catalyst exhibits high Faradaic efficiency (ca. 97.0 %) for CO production at a low overpotential of 0.35 V, outperforming all Fe‐N‐C‐based catalysts. The remarkable performance for CO2‐to‐CO conversion can be attributed to the presence of highly efficient singly dispersed FeN5 active sites supported on N‐doped graphene with an additional axial ligand coordinated to FeN4. DFT calculations revealed that the axial pyrrolic nitrogen ligand of the FeN5 site further depletes the electron density of Fe 3d orbitals and thus reduces the Fe–CO π back‐donation, thus enabling the rapid desorption of CO and high selectivity for CO production.  相似文献   

12.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

13.
Nitrogen‐doped carbon nanotubes (NCNTs) have been considered as a promising electrocatalyst for carbon‐dioxide‐reduction reactions, but two fundamental chemistry questions remain obscure: 1) What are the active centers with respect to various defect species and 2) what is the role of defect density on the selectivity of NCNTs? The aim of this work is to address these questions. The catalytic activity of NCNTs depends on the structural nature of nitrogen in CNTs and defect density. Comparing with pristine CNTs, the presence of graphitic and pyridinic nitrogen significantly decreases the overpotential (ca. ?0.18 V) and increases the selectivity (ca. 80 %) towards the formation of CO. The experimental results are in congruent with DFT calculations, which show that pyridinic defects retain a lone pair of electrons that are capable of binding CO2. However, for graphitic‐like nitrogen, electrons are located in the π* antibonding orbital, making them less accessible for CO2 binding.  相似文献   

14.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

15.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

16.
Electrochemical reduction of CO2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B‐ and N‐co‐doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (−1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co‐doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO2 reduction revealed by DFT computation was CO2→*COOH→*CO→*COCO→*COCH2OH→*CH2OCH2OH→CH3CH2OH.  相似文献   

17.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

18.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

19.
A new type of P‐doped Mo2C coated by N‐doped carbon (P‐Mo2C@NC) has been successfully prepared by calcining a mixture of H3[PMo12O40] polyoxometalates (POMs) and urea‐formaldehyde resin under an N2 atmosphere. Urea‐formaldehyde resin not only serves as the carbon source to ensure carbonization but also facilitates the uniform distribution of POM precursors, which efficiently avoid the aggregation of Mo2C particles at high temperatures. TEM analysis revealed that the average diameter of the Mo2C particles was about 10 nm, which is coated by a few‐layer N‐doped carbon sheet. The as‐prepared P‐Mo2C@NC displayed excellent hydrogen‐evolution reaction (HER) performance and long‐term stability in all pH environments. To reach a current density of 10 mA cm?2, only 109, 159, and 83 mV were needed for P‐Mo2C@NC in 0.5 m H2SO4 (pH 0), 0.1 m phosphate buffer (pH 7), and 1 m KOH (pH 14), respectively. This could provide a high‐yield and low‐cost method to prepare uniform nanosized molybdenum carbides with highly efficient and stable HER performance.  相似文献   

20.
Electrolyzers combining CO2 reduction (CO2R) with organic substrate oxidation can produce fuel and chemical feedstocks with a relatively low energy requirement when compared to systems that source electrons from water oxidation. Here, we report an anodic hybrid assembly based on a (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) electrocatalyst modified with a silatrane‐anchor ( STEMPO ), which is covalently immobilized on a mesoporous indium tin oxide (mesoITO) scaffold for efficient alcohol oxidation (AlcOx). This molecular anode was subsequently combined with a cathode consisting of a polymeric cobalt phthalocyanine on carbon nanotubes to construct a hybrid, precious‐metal‐free coupled AlcOx–CO2R electrolyzer. After three‐hour electrolysis, glycerol is selectively oxidized to glyceraldehyde with a turnover number (TON) of ≈1000 and Faradaic efficiency (FE) of 83 %. The cathode generated a stoichiometric amount of syngas with a CO:H2 ratio of 1.25±0.25 and an overall cobalt‐based TON of 894 with a FE of 82 %. This prototype device inspires the design and implementation of nonconventional strategies for coupling CO2R to less energy demanding, and value‐added, oxidative chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号