首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vicinal P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 undergoes 1,1‐carboboration reactions with the Me3Si‐substituted enynes to give ring‐enlarged functionalized C3‐bridged P/B FLPs. These serve as active FLPs in the activation of dihydrogen to give the respective zwitterionic [P]H+/[B]H? products. One such product shows activity as a metal‐free catalyst for the hydrogenation of enamines or a bulky imine. The ring‐enlarged FLPs contain dienylborane functionalities that undergo “bora‐Nazarov”‐type ring‐closing rearrangements upon photolysis. A DFT study had shown that the dienylborane cyclization of such systems itself is endothermic, but a subsequent C6F5 migration is very favorable. Furthermore, substituted 2,5‐dihydroborole products are derived from cyclization and C6F5 migration from the photolysis reaction. In the case of the six‐membered annulation product, a subsequent stereoisomerization reaction takes place and the resultant compound undergoes a P/B FLP 1,2‐addition reaction with a terminal alkyne with rearrangement.  相似文献   

2.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

3.
The design of structurally dynamic molecular networks can offer strategies for fabricating stimuli‐responsive adaptive materials. Herein we first report a gas‐responsive dynamic gel system based on frustrated Lewis pair (FLP) chemistry. Two trefoil‐like molecules with bulky triphenylborane and triphenylphosphine groups are synthesized as complementary Lewis acid and base with trivalent sites. They can together bind CO2 gas molecules and further form a cross‐linked network via the bonding interactions between FLPs and CO2. Such CO2‐bridged dative linkages are shown to be dynamic covalent bonds, which endow the frustrated Lewis network with adaptable behaviors and unprecedented gas‐regulated viscoelastic, mechanical, and self‐healing performance. This study is an initial attempt to apply the FLP concept in materials chemistry, but we believe that this strategy will open a promising future for gas‐sensitive smart materials.  相似文献   

4.
A metal–organic framework (NPC‐6) with an NbO topology based on a piperazine ring‐bridged diisophthalate ligand was synthesized and characterized. The incorporated piperazine group leads to an enhanced adsorption affinity for CO2 in NPC‐6, in which the CO2 uptake is 4.83 mmol g?1 at 293 K and 1 bar, ranking among the top values of CO2 uptake on MOF materials. At 0.15 bar and 293 K, the NPC‐6 adsorbs 1.07 mmol g?1 of CO2, which is about 55.1 % higher than that of the analogue MOF NOTT‐101 under the same conditions. The enhanced CO2 uptake combined with comparable uptakes for CH4 and N2 leads to much higher selectivities for CO2/CH4 and CO2/N2 gas mixtures on NPC‐6 than on NOTT‐101. Furthermore, an N‐alkylation is used in the synthesis of the PDIA ligand, leading to a much lower cost compared with that in the synthesis of ligands in the NOTT series, as the former does not require a palladium‐based catalyst and borate esters. Thus, we conclude that NPC‐6 is a promising candidate for CO2 capture applications.  相似文献   

5.
Frustrated Lewis pairs (FLPs) consist of sterically hindered Lewis acids and Lewis bases, which provide high catalytic activity towards non‐metal‐mediated activation of “inert” small molecules, including CO2 among others. One critical issue of homogeneous FLPs, however, is their instability upon recycling, leading to catalytic deactivation. Herein, we provide a solution to this issue by incorporating a bulky Lewis acid‐functionalized ligand into a water‐tolerant metal‐organic framework (MOF), named SION‐105 , and employing Lewis basic diamine substrates for the in situ formation of FLPs within the MOF. Using CO2 as a C1‐feedstock, this combination allows for the efficient transformation of a variety of diamine substrates into benzimidazoles. SION‐105 can be easily recycled by washing with MeOH and reused multiple times without losing its identity and catalytic activity, highlighting the advantage of the MOF approach in FLP chemistry.  相似文献   

6.
We report the synthesis, structural characterization, and porous properties of two isomeric supramolecular complexes of ([Cd(NH2?bdc)(bphz)0.5]?DMF?H2O}n (NH2?bdc=2‐aminobenzenedicarboxylic acid, bphz=1,2‐bis(4‐pyridylmethylene)hydrazine) composed of a mixed‐ligand system. The first isomer, with a paddle‐wheel‐type Cd2(COO)4 secondary building unit (SBU), is flexible in nature, whereas the other isomer has a rigid framework based on a μ‐oxo‐bridged Cd2(μ‐OCO)2 SBU. Both frameworks are two‐fold interpenetrated and the pore surface is decorated with pendant ?NH2 and ?N?N? functional groups. Both the frameworks are nonporous to N2, revealed by the type II adsorption profiles. However, at 195 K, the first isomer shows an unusual double‐step hysteretic CO2 adsorption profile, whereas the second isomer shows a typical type I CO2 profile. Moreover, at 195 K, both frameworks show excellent selectivity for CO2 among other gases (N2, O2, H2, and Ar), which has been correlated to the specific interaction of CO2 with the ?NH2 and ?N?N? functionalized pore surface. DFT calculations for the oxo‐bridged isomer unveiled that the ?NH2 group is the primary binding site for CO2. The high heat of CO2 adsorption (ΔHads=37.7 kJ mol?1) in the oxo‐bridged isomer is realized by NH2???CO2/aromatic π???CO2 and cooperative CO2???CO2 interactions. Further, postsynthetic modification of the ?NH2 group into ?NHCOCH3 in the second isomer leads to a reduced CO2 uptake with lower binding energy, which establishes the critical role of the ?NH2 group for CO2 capture. The presence of basic ?NH2 sites in the oxo‐bridged isomer was further exploited for efficient catalytic activity in a Knoevenagel condensation reaction.  相似文献   

7.
《化学:亚洲杂志》2017,12(3):283-288
The capture and storage of CO2 have been suggested as an effective strategy to reduce the global emissions of greenhouse gases. Hence, in recent years, many studies have been carried out to develop highly efficient materials for capturing CO2. Until today, different types of porous materials, such as zeolites, porous carbons, N/B‐doped porous carbons or metal‐organic frameworks (MOFs), have been studied for CO2 capture. Herein, the CO2 capture performance of new hybrid materials, graphene‐organic frameworks (GOFs) is described. The GOFs were synthesized under mild conditions through a solvothermal process using graphene oxide (GO) as a starting material and benzene 1,4‐diboronic acid as an organic linker. Interestingly, the obtained GOF shows a high surface area (506 m2 g−1) which is around 11 times higher than that of GO (46 m2 g−1), indicating that the organic modification on the GO surface is an effective way of preparing a porous structure using GO. Our synthetic approach is quite simple, facile, and fast, compared with many other approaches reported previously. The synthesized GOF exhibits a very large CO2 capacity of 4.95 mmol g−1 at 298 K (1 bar), which is higher those of other porous materials or carbon‐based materials, along with an excellent CO2/N2 selectivity of 48.8.  相似文献   

8.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

9.
A carbonate‐bridged rhodium(III) dimeric complex of formula μ‐CO3‐[(ppy)2Rh]2, (ppy = 2‐phenylpyridine) was synthesized and characterized by IR and 1H NMR spectroscopy as well as X‐ray diffraction. The bridging carbonate ion presumably originates from the capture of CO2 in air deduced on a series of control experiments, which may have valuable implications for the study of fixation of CO2. The luminescent and thermal properties of this complex were also investigated.  相似文献   

10.
The continued use of fossil fuels as primary sources of energy in industry and other applications stands the test of time, due to their availability and relatively lower cost than alternative sources of energy. In view of this perspective, obtaining an advanced bulk carbon dioxide (CO2) capture medium becomes an urgent necessity so as to mitigate their effect, especially in global warming, as the use of fossil fuels produces a high rate of CO2. In this work, the mechanism and kinetics of CO2 capture using aqueous piperazine (PZ) as an activator to 2‐amino‐2‐methyl‐1,3‐propanediol (AMPD) were investigated. The termolecular mechanism was used to model the kinetics of the system. Reaction kinetics of the single pure amines was first obtained. The reaction rate constant, the k value of AMPD, was 77.2 m3/kmol·s, with a reaction order, n, of 1.25 at 298 K. while that of PZ was equal to 11,059 m3/kmol·s and n as 1.49 at 298 K. Blending of 0.05 kmol/m3 of PZ with 0.5 kmol/m3 of AMPD gave a rate constant, k, value of 23,319 m3/kmol·s and n equal to 1.23 at 298 K. The result obtained for the blended system is more than twice the value of the summation of the corresponding pure amines; in addition, it is comparably higher than the rate constant of monoethanolamine (MEA) in use as a commercial solvent for CO2 capture. Therefore, an aqueous blend of PZ with AMPD deserves more comprehensive study as a solvent for commercial CO2 capture. AMPD like other sterically hindered amines absorbs CO2 in an equimolar ratio that is significantly higher than that of MEA. PZ serves as a promoter in the amine mixture and is required in a very small proportion.  相似文献   

11.
《化学:亚洲杂志》2017,12(21):2863-2872
A new strategy involving the computer‐assisted design of substituted imidazolate‐based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO2 capture, CO2 capture, and SO2/CO2 selectivity was explored. The best substituted imidazolate‐based ILs as absorbents for different applications were first predicted. During absorption, high SO2 capacities up to ≈5.3 and 2.4 mol molIL−1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N ⋅⋅⋅ S interactions between SO2 and the N atoms in the imidazolate anion with different substituents. In addition, CO2 capture by the imidazolate‐based ILs could also be easily tuned through changing the substituents of the ILs, and 4‐bromoimidazolate IL showed a high CO2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO2/CO2 could be reached by IL with 4,5‐dicyanoimidazolate anion owing to its high SO2 capacity but low CO2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum‐chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO2 and CO2 absorption mechanisms.  相似文献   

12.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   

13.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

14.
Electroreduction of CO2 to CO powered by renewable electricity is a possible alternative to synthesizing CO from fossil fuel. However, it is very hard to achieve high current density at high faradaic efficiency (FE). Here, the first use of N,P‐co‐doped carbon aerogels (NPCA) to boost CO2 reduction to CO is presented. The FE of CO could reach 99.1 % with a partial current density of ?143.6 mA cm?2, which is one of the highest current densities to date. NPCA has higher electrochemical active area and overall electronic conductivity than that of N‐ or P‐doped carbon aerogels, which favors electron transfer from CO2 to its radical anion or other key intermediates. By control experiments and theoretical calculations, it is found that the pyridinic N was very active for CO2 reduction to CO, and co‐doping of P with N hinder the hydrogen evolution reaction (HER) significantly, and thus the both current density and FE are very high.  相似文献   

15.
Current researchers from environmental and industrial fields are focusing on advanced means of carbon dioxide (CO2) capture to limit its consequences in process industries. They also intend to enhance the mitigation of environmental impart by CO2 especially its greenhouse effect. In this study, the kinetics of CO2 reaction with an aqueous blend of piperazine (PZ) and 2‐amino‐2‐ethyl‐1,3‐propanediol (AEPD) were investigated. It was found that blending of AEPD with a little percentage of PZ generated the observed rate constant, ko, values that were more than twice the direct summation of the ko values of the aqueous pure amines at the corresponding concentration and temperature. The kinetic study of the system was modeled using a termolecular mechanism. Blending 0.05 kmol/m3 of PZ with 0.5 kmol/m3 of AEPD gives an observed rate constant ko value of 2397.9 s?1 at 298 K. This result is comparable to rate constants of other amine mixtures. Thus, the aqueous blend of AEPD with PZ is an attractive solvent for CO2 capture that has good advantages. The PZ that serves as the promoter in the reaction is needed in small fraction, whereas AEPD, which is a sterically hindered amine, increases CO2 absorption capacity of the system. AEPD can be produced from renewable materials. © 2013 Wiley Periodicals, Inc. Int J Chem Kinet 45: 161–167, 2013  相似文献   

16.
Reactions of phosphine‐derived carbenes with 9‐borabicyclo[3.3.1]nonane (9‐BBN) result in ring‐expansion reactions to generate novel intramolecular frustrated Lewis pairs (FLPs). These FLPs effect the catalytic reduction of CO2 in the presence of boranes to give BOB and methoxy‐borate species.  相似文献   

17.
Hydroboration of dimesitylvinylphosphane with bis[3,5‐bis(trifluoromethyl)phenyl]borane [HB(Fxyl)2] gave the intramolecular ethylene‐bridged P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(Fxyl)2. The new compound underwent a variety of typical FLP reactions such as P/B‐addition to the carbonyl group of p‐chloro‐benzaldehyde. Cooperative N,N‐addition to nitric oxide gave the respective persistent P/B FLPNO. radical, which readily reacted with 1,4‐cyclohexadiene by H‐atom abstraction to yield the corresponding P/B FLPNOH product. The B(Fxyl)2‐containing FLP reacted as a template for the HB(C6F5)2 reduction of carbon monoxide to the formyl stage to give the respective FLP(η2‐formylborane) product. Most products were characterized by single‐crystal X‐ray crystal structure analysis.  相似文献   

18.
Thermolysis of the nitride‐bridged diuranium(IV) complex Cs{(μ‐N)[U(OSi(OtBu)3)3]2} ( 1 ) showed that the bridging nitride behaves as a strong nucleophile, promoting N?C bond formation by siloxide ligand fragmentation to yield an imido‐bridged siloxide/silanediolate diuranium(IV) complex, Cs{(μ‐NtBu)(μ‐O2Si(OtBu)2)U2(OSi(OtBu)3)5}. Complex 1 displayed reactivity towards CS2 and CO2 at room temperature that is unprecedented in f‐element chemistry, affording diverse N‐functionalized products depending on the reaction stoichiometry. The reaction of 1 with two equivalents of CS2 yielded the thiocyanate/thiocarbonate complex Cs{(μ‐NCS)(μ‐CS3)[U(OSi(OtBu)3)3]2} via a putative NCS?/S2? intermediate. The reaction of 1 with one equivalent of CO2 resulted in deoxygenation and N?C bond formation, yielding the cyanate/oxo complex Cs{(μ‐NCO)(μ‐O)[U(OSi(OtBu)3)3]2}. Addition of excess CO2 to 1 led to the unprecedented dicarbamate product Cs{(μ‐NC2O4)[U(OSi(OtBu)3)3]2}.  相似文献   

19.
Palladium, Platinum, and Diiron Complexes with Isocyanoacetate: Ring Closure, Acid‐Induced Ring Opening, Diprotonation Substitution by isocyanoacetate (CNCH2CO2?) of one chloro ligand in trans‐[MCl2(PPh3)2] (M = Pd, Pt) results in the Δ2‐oxazolin‐5‐on‐2‐ato complexes 4a , b , i.e. immediate cyclization occurs in contact with these metal(II) species. In contrast, the open‐chain form of the functional isocyanide is retained in [K(18‐crown‐6][Fe2Cp2(CNCH2CO2)(CO)3] ( 16 ) in which it occupies a terminal position. Protonation (alkylation) of the platinum complex 4b proceeds with ring cleavage and formation of isocyano acetic acid 11 (ethyl isocyanoacetate 12 ) stabilized by metal ion coordination. Protonation of 16 requires two equivalents of acid to yield the aminocarbyne‐bridged complex [{μ‐C=N(H)CH2CO2H}Fe2Cp2(CO)3](BF4) ( 17 ) as the only isolable product. Here isocyanoacetate displays a third kind of reactivity pattern in addition to that at PdII/PtII and that at Cr0/W0 where the primary species [M(CO)5CNCH2CO2]? and [M(CO)5CNCH2CO2H] proved to be the most stable. All of the proposed structures are substantiated by analytical and the usual spectroscopic (IR, NMR{1H, 13C, 31P}, FAB‐MS) data, that of 4b also by an X‐ray structure determination which reveals a practically perpendicular arrangement of the coordination and the ring plane, and a long C2‐O bond as the predetermined breaking point of the heterocycle.  相似文献   

20.
First N‐benzenesulfonyl‐L‐glutamic acid‐bridged manganese(II) coordination polymer [Mn(bipy)(bs‐glu)]n (bs‐glu = N‐benzenesulfonyl‐L‐glutamic acid dianion, bipy = 2, 2′‐bipyridine) has been synthesized and characterized structurally and magnetically. It crystallizes in the orthorhombic space group P212121. The γ‐carboxyl group coordinates to the MnII atom in a chelating mode, while the α‐carboxyl group coordinates in a bidentate‐bridging mode. The complex displays a one‐dimensional double‐chain polymer. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent MnII ions in the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号