首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino-acid side-chain labeling with 1H-13C NMR, we are able to identify specific protein protons of side-chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

2.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

3.
Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion–π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π‐acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π‐acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α‐protons in the 1H NMR spectra. The reactivity of these protons on π‐acidic surfaces is measured by hydrogen–deuterium (H–D) exchange for 11 different examples, excluding controls. The velocity of H–D exchange increases with π acidity (NDI core substituents: SO2R>SOR>H>OR>OR/NR2>SR>NR2). The H–D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11–13 atoms). Most importantly, H–D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)‐macrocycle is reported). For maximal π acidity, transition‐state stabilizations up to ?18.8 kJ mol?1 are obtained for H–D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa=10.9 calculates to a ΔpKa=?5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as “impossible” in biology, the found enolate–π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven‐component π‐acidity gradient over almost 1 eV demonstrates quantitatively that such important anion–π activities can be expected only from strong enough π acids.  相似文献   

4.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

5.
Several bis(triazolium)‐based receptors have been synthesized as chemosensors for anion recognition. The central naphthalene core features two aryltriazolium side‐arms. NMR experiments revealed differences between the binding modes of the two triazolium rings: one triazolium ring acts as a hydrogen‐bond donor, the other as an anion–π receptor. Receptors 92+?2BF4 ? (C6H5), 112+?2BF4 ? (4‐NO2?C6H4), and 132+?2BF4? (ferrocenyl) bind HP2O73? anions in a mixed‐binding mode that features a combination of hydrogen‐bonding and anion–π interactions and results in strong binding. On the other hand, receptor 102+?2 BF4 ? (4‐CH3O?C6H4) only displays combined Csp2?H/anion–π interactions between the two arms of the receptors and the bound anion rather than triazolium (CH)+???anion hydrogen bonding. All receptors undergo a downfield shift of the triazolium protons, as well as the inner naphthalene protons, in the presence of H2PO4? anions. That suggests that only hydrogen‐bonding interactions exist between the binding site and the bound anion, and involve a combination of cationic (triazolium) and neutral (naphthalene) C?H donor interactions. Theoretical calculations relate the electronic structure of the substituent on the aromatic group with the interaction energies and provide a minimum‐energy conformation for all the complexes that explains their measured properties.  相似文献   

6.
Anion–π interactions between a π‐acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron‐deficient aromatic system (1,3,5‐trinitrobenzene (TNB)) and selected anions (OH?, Br?, and I?) are examined in the gas phase by using the combined information derived from collision‐induced dissociation experiments at variable energy, infrared multiple‐photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion–arene complexes depending on the nature of the anion. The TNB–OR? complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic σ‐complex structure whereby RO? attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C–X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak σ interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.  相似文献   

7.
Interactions of anions with simple aromatic compounds have received growing attention due to their relevancy in various fields. Yet, the anion–π interactions are generally very weak, for example, there is no favorable anion–π interaction for the halide anion F? on the simplest benzene surface unless the H‐atoms are substituted by the highly negatively charged F. In this article, we report a type of particularly strong anion–π interactions by investigating the adsorptions of three halide anions, that is, F?, Cl?, and Br?, on the hydrogenated‐graphene flake using the density functional theory. The anion–π interactions on the graphene flake are shown to be unexpectedly strong compared to those on simple aromatic compounds, for example, the F?‐adsorption energy is as large as 17.5 kcal/mol on a graphene flake (C84H24) and 23.5 kcal/mol in the periodic boundary condition model calculations on a graphene flake C113 (the supercell containing a F? ion and 113 carbon atoms). The unexpectedly large adsorption energies of the halide anions on the graphene flake are ascribed to the effective donor–acceptor interactions between the halide anions and the graphene flake. These findings on the presence of very strong anion–π interactions between halide ions and the graphene flake, which are disclosed for the first time, are hoped to strengthen scientific understanding of the chemical and physical characteristics of the graphene in an electrolyte solution. These favorable interactions of anions with electron‐deficient graphene flakes may be applicable to the design of a new family of neutral anion receptors and detectors. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H…π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton‐transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7‐oxocyclohepta‐1,3,5‐trien‐1‐olate, C4H12N+·C7H5O2, has been investigated by X‐ray crystallography, with complementary quantum‐chemical and statistical‐database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice‐packing phenomena. The crystal structure deduced from low‐temperature diffraction measurements displays extensive hydrogen‐bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H…π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton‐donating and proton‐accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven‐membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen‐bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid‐based complex, combined with unambiguous signatures of enhanced proton‐delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.  相似文献   

9.
10.
NMR spectroscopy and isothermal titration calorimetry (ITC) are powerful methods to investigate ligand–protein interactions. Here, we present a versatile and sensitive fluorine NMR spectroscopic approach that exploits the 19F nucleus of 19F‐labeled carbohydrates as a sensor to study glycan binding to lectins. Our approach is illustrated with the 11 kDa Cyanovirin‐N, a mannose binding anti‐HIV lectin. Two fluoro‐deoxy sugar derivatives, methyl 2‐deoxy‐2‐fluoro‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranoside and methyl 2‐deoxy‐2‐fluoro‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranoside were utilized. Binding was studied by 19F NMR spectroscopy of the ligand and 1H–15N HSQC NMR spectroscopy of the protein. The NMR data agree well with those obtained from the equivalent reciprocal and direct ITC titrations. Our study shows that the strategic design of fluorinated ligands and fluorine NMR spectroscopy for ligand screening holds great promise for easy and fast identification of glycan binding, as well as for their use in reporting structural and/or electronic perturbations that ensue upon interaction with a cognate lectin.  相似文献   

11.
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium.  相似文献   

12.
Metal‐binding scaffolds incorporating a Trp/His‐paired epitope are instrumental in giving novel insights into the physicochemical basis of functional and mechanistic versatility conferred by the Trp–His interplay at a metal site. Herein, by coupling biometal site mimicry and 1H and 13C NMR spectroscopy experiments, modular constructs EDTA‐(L ‐Trp, L ‐His) (EWH; EDTA=ethylenediamino tetraacetic acid) and DTPA‐(L ‐Trp, L ‐His) (DWH; DTPA=diethylenetriamino pentaacetic acid) were employed to dissect the static and transient physicochemical properties of hydrophobic/hydrophilic aromatic interactive modes surrounding biometal centers. The binding feature and identities of the stoichiometric metal‐bound complexes in solution were investigated by using 1H and 13C NMR spectroscopy, which facilitated a cross‐validation of the carboxylate, amide oxygen, and tertiary amino groups as the primary ligands and indole as the secondary ligand, with the imidazole (Im) N3 nitrogen being weakly bound to metals such as Ca2+ owing to a multivalency effect. Surrounding the metal centers, the stereospecific orientation of aromatic rings in the diastereoisomerism is interpreted with the Ca2+–EWH complex. With respect to perturbed Trp side‐chain rotamer heterogeneity, drastically restricted Trp side‐chain flexibility and thus a dynamically constrained rotamer interconversion due to π interactions is evident from the site‐selective 13C NMR spectroscopic signal broadening of the Trp indolyl C3 atom. Furthermore, effects of Trp side‐chain fluctuation on indole/Im orientation were the subject of a 2D NMR spectroscopy study by using the Ca2+‐bound state; a C? H2(indolyl)/C? H5(Im+) connectivity observed in the NOESY spectra captured direct evidence that the N? H1 of the Ca2+–Im+ unit interacted with the pyrrole ring of the indole unit in Ca2+‐bound EWH but not in DWH, which is assignable to a moderately static, anomalous, T‐shaped, interplanar π+–π stacking alignment. Nevertheless, a comparative 13C NMR spectroscopy study of the two homologous scaffolds revealed that the overall response of the indole unit arises predominantly from global attractions between the indole ring and the entire positively charged first coordination sphere. The study thus demonstrates the coordination‐sphere/geometry dependence of the Trp/His side‐chain interplay, and established that π interactions allow 13C NMR spectroscopy to offer a new window for investigating Trp rotamer heterogeneity near metal‐binding centers.  相似文献   

13.
The interplay between cation–π and coinage‐metal–oxygen interactions are investigated in the ternary systems N???PhCCM???O (N=Li+, Na+, Mg2+; M=Ag, Au; O=water, methanol, ethanol). A synergetic effect is observed when cation–π and coinage‐metal–oxygen interactions coexist in the same complex. The cation–π interaction in most triads has a greater enhancing effect on the coinage‐metal–oxygen interaction. This effect is analyzed in terms of the binding distance, interaction energy, and electrostatic potential in the complexes. Furthermore, the formation, strength, and nature of both the cation–π and coinage‐metal–oxygen interactions can be understood in terms of electrostatic potential and energy decomposition. In addition, experimental evidence for the coexistence of both interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

14.
The ability of multiple CF3‐substituted arenes to act as acceptors for anions is investigated. The results of quantum‐chemical calculations show that a high degree of trifluoromethyl substitution at the aromatic ring results in a positive quadrupole moment. However, depending on the polarizability of the anion and on the substitution at the arene, three different modes of interaction, namely Meisenheimer complex, side‐on hydrogen bonding, or anion–π interaction, can occur. Experimentally, the side‐on as well as a η2‐type π‐complex are observed in the crystal, whereas in solution only side‐on binding is found.  相似文献   

15.
Tetrameric H10/12 helix stabilization was achieved by the application of aromatic side‐chains in β‐peptide oligomers by intramolecular backbone–side chain CH–π interactions. Because of the enlarged hydrophobic surface of the oligomers, a further aim was the investigation of the self‐assembly in a polar medium for the β‐peptide H10/12 helices. NMR, ECD, and molecular modeling results indicated that the oligomers formed by cis‐[1S,2S]‐ or cis‐[1R,2R]‐1‐amino‐1,2,3,4‐tetrahydronaphthalene‐2‐carboxylic acid (ATENAC) and cis‐[1R,2S]‐ or cis‐[1S,2R]‐2‐aminocyclohex‐3‐enecarboxylic acid (ACHEC) residues promote stable H10/12 helix formation with an alternating backbone configuration even at the tetrameric chain length. These results support the view that aromatic side‐chains can be applied for helical structure stabilization. Importantly, this is the first observation of a stable H10/12 helix with tetrameric chain‐length. The hydrophobically driven self‐assembly was achieved for the helix‐forming oligomers, seen as vesicles in transmission electron microscopy images. The self‐association phenomenon, which supports the helical secondary structure of these oligomers, depends on the hydrophobic surface area, because a higher number of aromatic side‐chains yielded larger vesicles. These results serve as an essential element for the design of helices relating to the H10/12 helix. Moreover, they open up a novel area for bioactive foldamer construction, while the hydrophobic area gained through the aromatic side‐chains may yield important receptor–ligand interaction surfaces, which can provide amplified binding strength.  相似文献   

16.
Because arginine residues in proteins are expected to be in their protonated form almost without exception, reports demonstrating that a protein arginine residue is charge‐neutral are rare and potentially controversial. Herein, we present a 13C‐detected NMR experiment for probing individual arginine residues in proteins notwithstanding the presence of chemical and conformational exchange effects. In the experiment, the 15Nη and 15Nϵ chemical shifts of an arginine head group are correlated with that of the directly attached 13Cζ. In the resulting spectrum, the number of protons in the arginine head group can be obtained directly from the 15N–1H scalar coupling splitting pattern. We applied this method to unambiguously determine the ionization state of the R52 side chain in the photoactive yellow protein from Halorhodospira halophila . Although only three Hη atoms were previously identified by neutron crystallography, we show that R52 is predominantly protonated in solution.  相似文献   

17.
The recognition properties of heteroditopic hemicryptophane hosts towards anions, cations, and neutral pairs, combining both cation–π and anion–π interaction sites, were investigated to probe the complexity of interfering weak intermolecular interactions. It is suggested from NMR experiments, and supported by CASSCF/CASPT2 calculations, that the binding constants of anions can be modulated by a factor of up to 100 by varying the fluorination sites on the electron‐poor aromatic rings. Interestingly, this subtle chemical modification can also reverse the sign of cooperativity in ion‐pair recognition. Wavefunction calculations highlight how short‐ and long‐range interactions interfere in this recognition process, suggesting that a disruption of anion–π interactions can occur in the presence of a co‐bound cation. Such molecules can be viewed as prototypes for examining complex processes controlled by the competition of weak interactions.  相似文献   

18.
Simple pentafluorobenzyl‐substituted ammonium and pyridinium salts with different anions can be easily obtained by treatment of the parent amine or pyridine with the respective pentafluorobenzyl halide. Hexafluorophosphate is introduced as the anion by salt metathesis. In the case of the ammonium salt 4 , water co‐crystallisation seems to suppress effective anion–π interactions of bromide with the electron‐deficient aromatic system, whereas with salts 5 and 6 such interactions are observed despite the presence of water. However, due to asymmetric hydrogen‐bonding interactions with ammonium side chains, the anion of 5 is located close to the rim of the pentafluorophenyl group (η1 interaction). In 6 the CH–anion hydrogen bonding is more symmetric and fixes the anion on top of the ring (η6). A similar structure‐controlling effect is observed in case of the 1,4‐diazabicyclo[2.2.2]octane derivatives 7 . Here the position of the anion (Cl, Br, I) is shifted according to the length of the weak CH–halide interaction. The hexafluorophosphate 7 d reveals that this “non‐coordinating” anion can be located on top of an aromatic π system. In the methyl‐substituted pyridinium salts 9 and 10 different locations of the bromide anions with respect to the π system are observed. This is due to different conformations of the mono‐ versus disubstituted pyridine, which leads to different directions of the weak, but structurally important, HMe? Br bonds.  相似文献   

19.
We report a method for the screening of interactions between proteins and selenium‐labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR‐active handle and reports on binding through 77Se NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to 13C NMR, while the NMR spectral width is ten times larger, yielding little overlap in 77Se NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium‐based bioactive compounds, such as glycomimetic drug candidates.  相似文献   

20.
In this study, several lone pair–π and aerogen–π complexes between XeO3 and XeF4 and aromatic rings with different electronic natures (benzene, trifluorobenzene, and hexafluorobenzene) are optimized at the RI‐MP2/aug‐cc‐pVTZ level of theory. All complexes are characterized as true minima by frequency analysis calculations. The donor/acceptor role of the ring in the complexes is analyzed using the natural bond orbital computational tool, showing a remarkable contribution of orbital interactions to the global stabilization of the aerogen–π complexes. Finally, Bader's AIM analysis of several complexes is performed to further characterize the lone pair–π and aerogen–π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号