首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

2.
Immobilized nickel catalysts SBA*‐ L ‐x/Ni ( L =bis(2‐pyridylmethyl)(1H‐1,2,3‐triazol‐4‐ylmethyl)amine) with various ligand densities ( L content (x)=0.5, 1, 2, 4 mol % Si) have been prepared from azidopropyl‐functionalized mesoporous silicas SBA‐N3x. Related homogeneous ligand LtBu and its NiII complexes, [Ni( LtBu )(OAc)2(H2O)] ( LtBu /Ni) and [Ni( LtBu )2]BF4 (2 LtBu /Ni), have been synthesized. The L /Ni ratio (0.9–1.7:1) in SBA*‐ L ‐x/Ni suggests the formation of an inert [Ni L 2] site on the surface at higher ligand loadings. SBA*‐ L ‐x/Ni has been applied to the catalytic oxidation of cyclohexane with m‐chloroperbenzoic acid (mCPBA). The catalyst with the lowest loading shows high activity in its initial use as the homogeneous LtBu /Ni catalyst, with some metal leaching. As the ligand loading increases, the activity and Ni leaching are suppressed. The importance of site‐density control for the development of immobilized catalysts has been demonstrated.  相似文献   

3.
A changeable ligand, which involves in activation of a catalyst or assists a reaction, draws an increasing attention, in contrast to a classical ligand as spectator. Proton‐responsive catalysts, which are capable of undergoing changes of properties on gaining/losing one or more protons, provides interesting features as follows: (i) catalyst activation by electronic effect, (ii) pH‐tuning of water‐solubility, and (iii) second‐coordination‐sphere interaction. On the basis of this catalyst design concept, we developed several highly efficient proton‐responsive catalysts for CO2 hydrogenation as H2 storage, formic acid (FA) dehydrogenation as H2 production, and transfer hydrogenation. The transformable ligands of proton‐responsive catalysts in promoting effective catalysis have aroused our interest. In this account, we summarize our efforts for the development and application of proton‐responsive catalysts. Specifically, the important role of pH‐dependent proton‐responsive complexes will be discussed.  相似文献   

4.
Single‐atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single‐atom sites were stabilized on an ordered porous nitrogen‐doped carbon matrix (ISAS‐Co/OPNC). ISAS‐Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N‐heterocycles to release H2. ISAS‐Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N‐heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS‐Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious‐metal catalysts. The reaction mechanisms are systematically investigated using first‐principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.  相似文献   

5.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

6.
The catalytic reactivity of the high‐spin MnII pyridinophane complexes [(Py2NR2)Mn(H2O)2]2+ (R=H, Me, tBu) toward O2 formation is reported. With small macrocycle N‐substituents (R=H, Me), the complexes catalytically disproportionate H2O2 in aqueous solution; with a bulky substituent (R=tBu), this catalytic reaction is shut down, but the complex becomes active for aqueous electrocatalytic H2O oxidation. Control experiments are in support of a homogeneous molecular catalyst and preliminary mechanistic studies suggest that the catalyst is mononuclear. This ligand‐controlled switch in catalytic reactivity has implications for the design of new manganese‐based water oxidation catalysts.  相似文献   

7.
We present herein a Cp*Co(III)‐half‐sandwich catalyst system for electrocatalytic CO2 reduction in aqueous acetonitrile solution. In addition to an electron‐donating Cp* ligand (Cp*=pentamethylcyclopentadienyl), the catalyst featured a proton‐responsive pyridyl‐benzimidazole‐based N,N‐bidentate ligand. Owing to the presence of a relatively electron‐rich Co center, the reduced Co(I)‐state was made prone to activate the electrophilic carbon center of CO2. At the same time, the proton‐responsive benzimidazole scaffold was susceptible to facilitate proton‐transfer during the subsequent reduction of CO2. The above factors rendered the present catalyst active toward producing CO as the major product over the other potential 2e/2H+ reduced product HCOOH, in contrast to the only known similar half‐sandwich CpCo(III)‐based CO2‐reduction catalysts which produced HCOOH selectively. The system exhibited a Faradaic efficiency (FE) of about 70% while the overpotential for CO production was found to be 0.78 V, as determined by controlled‐potential electrolysis.  相似文献   

8.
The use of formic acid (FA) to produce molecular H2 is a promising means of efficient energy storage in a fuel‐cell‐based hydrogen economy. To date, there has been a lack of heterogeneous catalyst systems that are sufficiently active, selective, and stable for clean H2 production by FA decomposition at room temperature. For the first time, we report that flexible pyridinic‐N‐doped carbon hybrids as support materials can significantly boost the efficiency of palladium nanoparticle for H2 generation; this is due to prominent surface electronic modulation. Under mild conditions, the optimized engineered Pd/CN0.25 catalyst exhibited high performance in both FA dehydrogenation (achieving almost full conversion, and a turnover frequency of 5530 h?1 at 25 °C) and the reversible process of CO2 hydrogenation into FA. This system can lead to a full carbon‐neutral energy cycle.  相似文献   

9.
Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.  相似文献   

10.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

11.
The synthesis of branched polyethylenes by ethylene polymerization with new tandem catalyst systems consisting of methylaluminoxane‐preactivated linked cyclopentadienyl‐amido titanium catalysts [Ti(η51‐C5Me4SiMe2NR)Cl2 (R = Me or tBu)] supported on pyridylethylsilane‐modified silica (PySTiNMe and PySTiNtBu) and homogeneous dibromo nickel catalyst having a pyridyl‐2,6‐diisopropylphenylimine ligand (PyminNiBr2) in the presence of modified methylaluminoxane was investigated. Ethylene polymerization with only PyminNiBr2 yielded a mixture of 1‐ and 2‐olefin oligomers with methyl branches [weight‐average molecular weight (Mw) ~ 460)] with a ratio of about 1:7. By the combination of this nickel catalyst with PySTiNtBu, polyethylenes with long‐chain branches (Mw = 15,000–50,000) were produced. No incorporation of 2‐olefin oligomers was observed in the 13C NMR spectra. Unexpectedly, the combination of the nickel catalyst with PySTiNMe produced lower molecular weight polyethylenes with only methyl branches. The molecular weight distributions of branched polyethylenes obtained with both PySTiNMe and PySTiNtBu combined with the nickel catalyst were broad (weight‐average molecular weight/number‐average molecular weight < 9). Bimodal gel permeation chromatography (GPC) curves were clearly observed in the PySTiNMe system, whereas GPC curves with small shoulders in low molecular weight areas were observed for PySTiNtBu. The synthesis of branched polyethylenes with tandem catalyst systems of corresponding homogeneous titanium catalysts and the nickel catalyst was also investigated for comparison. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 528–544, 2003  相似文献   

12.
C−N bond formation is regarded as a very useful and fundamental reaction for the synthesis of nitrogen-containing molecules in both organic and pharmaceutical chemistry. Noble-metal and homogeneous catalysts have frequently been used for C−N bond formation, however, these catalysts have a number of disadvantages, such as high cost, toxicity, and low atom economy. In this work, a low-toxic and cheap iron complex (iron ethylene-1,2-diamine) has been loaded onto carbon nanotubes (CNTs) to prepare a heterogeneous single-atom catalyst (SAC) named Fe-Nx/CNTs. We employed this SAC in the synthesis of C−N bonds for the first time. It was found that Fe-Nx/CNTs is an efficient catalyst for the synthesis of C−N bonds starting from aromatic amines and ketones. Its catalytic performance was excellent, giving yields of up to 96 %, six-fold higher than the yields obtained with noble-metal catalysts, such as AuCl3/CNTs and RhCl3/CNTs. The catalyst showed efficacy in the reactions of thirteen aromatic amine substrates, without the need for additives, and seventeen enaminones were obtained. High-angle annular dark-field scanning transmission electron microscopy in combination with X-ray absorption spectroscopy revealed that the iron species were well dispersed in the Fe-Nx/CNTs catalyst as single atoms and that Fe-Nx might be the catalytic active species. This Fe-Nx/CNTs catalyst has potential industrial applications as it could be cycled seven times without any significant loss of activity.  相似文献   

13.
It remains a significant challenge to construct an integrated catalyst that combines advantages of homogeneous and heterogeneous catalysis with clarified mechanism and high performance. Here we show atomically precise CuAg cluster catalysts for CO2 capture and utilization, where two functional units are combined into the clusters: metal and ligand. Due to atomic resolution on total and local structures of such catalysts to be achieved, which disentangles heterogeneous imprecise systems and permits tracing the reaction processes via experiments coupled with theory, site-specific catalysis induced by metal-ligand synergy can be accurately elucidated. The CuAg cluster catalysts exhibit excellent reactivity and recyclability to forge the C−N bonding from CO2 formylation with secondary amines that can make the cluster catalysts more unique compared with typically homogeneous complexes.  相似文献   

14.
A new class of homogeneous chromium(III)-based catalysts of the type [Cp*CrMeCl]2/MAO with different kinds of Cp ligands has been synthesized. The influence of the electronic nature and the sterical demand of the catalysts were explored with regard to the vinylic polymerization of norbornene. The catalyst activity could be increased by intensifying the electron-donating character of the Cp ligand, whereas the sterical demand of the Cp ligand affects the crystallinity of the obtained polynorbornene. In order to improve their processability, copolymers of norbornene with ethene were made using the [Cp*CrMeCl]2/MAO catalyst, which led to copolymers with a high α-olefin content. Furthermore, highly linear, ultra-high molecular weight polyethylene was obtained using the new class of chromium(III)-based catalysts.  相似文献   

15.
Metal–ligand cooperation (MLC) plays an important role in catalysis. Systems reported so far are generally based on a single mode of MLC. We report here a system with potential for MLC by both amine–amide and aromatization–dearomatization ligand transformations, based on a new class of phosphino–pyridyl ruthenium pincer complexes, bearing sec‐amine coordination. These pincer complexes are effective catalysts under unprecedented mild conditions for acceptorless dehydrogenative coupling of alcohols to esters at 35 °C and hydrogenation of esters at room temperature and 5 atm H2. The likely actual catalyst, a novel, crystallographically characterized monoanionic de‐aromatized enamido–RuII complex, was obtained by deprotonation of both the N?H and the methylene proton of the N‐arm of the pincer ligand.  相似文献   

16.
The homogeneous catalytic system, based on water-soluble ruthenium(II)–TPPTS catalyst (TPPTS = meta-trisulfonated triphenylphosphine), selectively decomposes HCOOH into H2 and CO2 in aqueous solution. Although this reaction results in only two gas products, heterogeneous catalysts could be advantageous for recycling, especially for dilute formic acid solutions, or for mobile, portable applications. Several approaches have been used to immobilize/solidify the homogeneous ruthenium–TPPTS catalyst based on ion exchange, coordination and physical absorption. The activity of the various heterogeneous catalysts for the decomposition of formic acid has been determined. These heterogenized catalysts offer the advantage of easy catalyst separation/recycling in dilute formic acid, or for mobile, portable applications.  相似文献   

17.
A new pentadentate oxime has been designed to drive the preferential coordination favored by CoI in catalysts used for proton/water reduction. The ligand incorporates water upon metal coordination and is water soluble. This CoIII species is doubly reduced to CoI and exhibits H+ reduction activity in the presence of weak acids in MeCN and evolves H2 upon protonation suggesting that the ligand design increases catalyst effectiveness. Superior catalysis is observed in water with a turnover number (TON) of 5700 over 18 h. However, the catalyst yields Co‐based nanoparticles, indicating that the solvent media may dictate the nature of the catalyst.  相似文献   

18.
The integration of molecular catalysts with low‐cost, solid light absorbers presents a promising strategy to construct catalysts for the generation of solar fuels. Here, we report a photocatalyst for CO2 reduction that consists of a polymeric cobalt phthalocyanine catalyst (CoPPc) coupled with mesoporous carbon nitride (mpg‐CNx) as the photosensitizer. This precious‐metal‐free hybrid catalyst selectively converts CO2 to CO in organic solvents under UV/Vis light (AM 1.5G, 100 mW cm?2, λ>300 nm) with a cobalt‐based turnover number of 90 for CO after 60 h. Notably, the photocatalyst retains 60 % CO evolution activity under visible light irradiation (λ>400 nm) and displays moderate water tolerance. The in situ polymerization of the phthalocyanine allows control of catalyst loading and is key for achieving photocatalytic CO2 conversion.  相似文献   

19.
《化学:亚洲杂志》2018,13(18):2714-2722
Currently, the base‐free aerobic oxidation of biomass‐derived 5‐hydroxymethylfurfural (HMF) to produce 2,5‐furandicarboxylic acid (FDCA) is attracting intense interest due to its prospects for the green, sustainable, and promising production of biomass‐based aromatic polymers. Herein, we have developed a new Pt catalyst supported on nitrogen‐doped‐carbon‐decorated CeO2 (NC‐CeO2) for the aerobic oxidation of HMF in water without the addition of any homogeneous base. It was demonstrated that the small‐sized Pt particles could be well dispersed on the surface of the hybrid NC‐CeO2 support, and the activity of the supported Pt catalyst depended strongly on the surface structure and properties of the catalysts. The as‐fabricated Pt/NC‐CeO2 catalyst, with abundant surface defects, enhanced basicity, and favorable electron‐deficient metallic Pt species, enabled an almost 100 % yield of FDCA in water with molecular oxygen (0.4 MPa) at 110 °C for 8 h without the addition of any homogeneous base, which is indicative of exceptional catalytic performance. Furthermore, this Pt/NC‐CeO2 catalyst also showed good stability and reusability owing to strong metal–support interactions. An understanding of the role of surface structural defects and basicity of the hybrid NC‐CeO2 support provides a basis for the rational design of high‐performance and stable supported metal catalysts with practical applications in various transformations of biomass‐derived compounds.  相似文献   

20.
Two new complexes, [Pd(L1)(C,N)]NO3 ( 1 ) and [Pd(L2)(C,N)]NO3 ( 2 ) (L1 = 5‐nitro‐1,10‐phenanthroline, L2 = 4‐methyl‐1,10‐phenanthroline, C,N = benzylamine), have been synthesized and characterized using infrared and NMR spectroscopies and elemental analysis. Montmorillonite (MMT‐K10 clay) was used as a solid support for incorporating the cationic part of complexes 1 and 2 to produce catalysts 1 and 2 , respectively, as heterogeneous catalysts. Catalyst 1 was identified using powder X‐ray diffraction and scanning and transmission electron microscopies, and the content of palladium obtained from inductively coupled plasma analysis. By changing the electron‐donating group on the L1 ligand with an electron‐withdrawing one, a minor improvement was observed in the catalytic properties. Catalyst 1 showed better efficiency for oxidation of benzyl alcohol in comparison with catalyst 2 , so catalyst 1 was used for the aerobic oxidation of alcohols to corresponding aldehydes or ketones without over‐oxidation (with and without bubbling of air). This catalytic system showed high activity towards alcohols under mild conditions. Finally, the reusability of catalyst 1 was investigated with multiple reuses of the supported catalyst in subsequent alcohol oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号