首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(10):1069-1074
Anionic and neutral fullerene derivatives were dissolved in water by using β‐(1,3‐1,6)‐d ‐glucan (β‐1,3‐glucan) as a solubilizing agent. In the water‐solubilized complexes, the concentrations of fullerene derivatives were ≈0.30 mm and the average particle sizes were ≈90 nm. The β‐1,3‐glucan‐complexed fullerene derivative with a carboxylic acid was found to have higher photodynamic activity toward macrophages under visible‐light irradiation (λ >610 nm) than other β‐1,3‐glucan‐complexed fullerene derivatives. This result suggests that carboxylic acid moieties in the complex enhance the binding affinity with β‐1,3‐glucan receptors on the surface of macrophages when the β‐1,3‐glucan is recognized. In contrast, all β‐1,3‐glucan‐complexed fullerene derivatives showed no photodynamic activity toward HeLa cells under the same conditions.  相似文献   

2.
We have established a convenient method for the base‐promoted direct amination of β‐unsubstituted 5,15‐diazaporphyrins (DAPs) with secondary and primary amines to produce 3,7,13,17‐tetraamino‐ and 3‐amino‐DAPs, respectively, regioselectively. The amino groups attached at the periphery cause significant red shifts of the absorption bands as a result of their perturbation of the HOMO and/or LUMO in the DAP π‐system. The palladium complex of a 3,7,13,17‐tetrakis(diphenylamino)‐DAP generated singlet oxygen in high yield under irradiation with near‐infrared light.  相似文献   

3.
We report the synthesis, crystallographic, optical, and triplet and singlet oxygen generation properties of a series of BF2‐rigidified partially closed chain bromotetrapyrroles as near infrared emitters and photosensitizers. These novel dyes were efficiently synthesized from a nucleophilic substitution reaction between pyrroles and the 3,5‐bromo‐substituents on the tetra‐ and hexabromoBODIPYs and absorb in the near‐infrared region (681–754 nm) with high molar extinction coefficients. Their fluorescent emission (708–818 nm) and singlet oxygen generation properties are significantly affected by alkyl substitutions on the two uncoordinated pyrrole units of these dyes and the polarity of solvents. Among them, dyes 4 ca and 4 da show good singlet oxygen generation efficiency and good NIR fluorescence emission (fluorescence quantum yields of 0.14–0.43 in different solvents studied).  相似文献   

4.
We have demonstrated that giant polymer micelles with a uniform diameter (ca. 200 nm) can be fabricated by “supramolecular wrapping” of poly(styrene) (PS) with the β‐1,3‐glucan polysaccharide, with the β‐1,3‐glucan fastening the PS chains together in a noncovalent fashion to facilitate the formation of a supramolecular polymer network on the O/W emulsion surface. Various spectroscopic and microscopic investigations have revealed that the inner cores of the micelles are comprised of a hydrophobic PS network, whereas the surfaces consist of a hydrophilic β‐1,3‐glucan layer. Accordingly, functional guest molecules can easily be encapsulated inside the cavity through hydrophobic interactions. The encapsulated molecules can simply be released from the micelle cores by peeling off the β‐1,3‐glucan shell in a supramolecular manner. As functional groups can be introduced into the glucose side‐chain unit in a straightforward manner by chemical modification, the micellar surface can acquire further functions useful for molecular recognition. These results show that the micelles obtained could have applications as novel soft nanoparticles, which would be indispensable not only for nanotechnologies, but also for biotechnologies aimed at gene or drug delivery systems.  相似文献   

5.
β‐Glucans are a group of structurally heterogeneous polysaccharides found in bacteria, fungi, algae and plants. β‐(1,3)‐D ‐Glucans have been studied in most detail due to their impact on the immune system of vertebrates. The studies into the immunomodulatory properties of these glucans are typically carried out with isolates that contain a heterogeneous mixture of polysaccharides of different chain lengths and varying degrees of branching. In order to determine the structure–activity relationship of β‐(1,3)‐glucans, access to homogeneous, structurally‐defined samples of these oligosaccharides that are only available through chemical synthesis is required. The syntheses of β‐glucans reported to date rely on the classical solution‐phase approach. We describe the first automated solid‐phase synthesis of a β‐glucan oligosaccharide that was made possible by innovating and optimizing the linker and glycosylating agent combination. A β‐(1,3)‐glucan dodecasaccharide was assembled in 56 h in a stereoselective fashion with an average yield of 88 % per step. This automated approach provides means for the fast and efficient assembly of linker‐functionalized mono‐ to dodecasaccharide β‐(1,3)‐glucans required for biological studies.  相似文献   

6.
《化学:亚洲杂志》2017,12(18):2447-2456
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso ‐aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady‐state and time‐resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron‐donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl‐BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors.  相似文献   

7.
We have developed an activatable photosensitizer capable of specifically inducing the death of β‐galactosidase‐expressing cells in response to photoirradiation. By using a selenium‐substituted rhodol scaffold bearing β‐galactoside as a targeting substituent, we designed and synthesized HMDESeR‐βGal, which has a non‐phototoxic spirocyclic structure owing to the presence of the galactoside moiety. However, β‐galactosidase efficiently converted HMDESeR‐βGal into phototoxic HMDESeR, which exists predominantly in the open xanthene form. This structural change resulted in drastic recovery of visible‐wavelength absorption and the ability to generate singlet oxygen (1O2). When HMDESeR‐βGal was applied to larval Drosophila melanogaster wing disks, which express β‐galactosidase only in the posterior region, photoirradiation induced cell death in the β‐galactosidase‐expressing region with high specificity.  相似文献   

8.
We isolated α‐chitin, β‐chitin, and γ‐chitin from natural resources by a chemical method to investigate the crystalline structure of chitin. Its characteristics were identified with Fourier transform infrared (FTIR) and solid‐state cross‐polarization/magic‐angle‐spinning (CP–MAS) 13C NMR spectrophotometers. The average molecular weights of α‐chitin, β‐chitin, and γ‐chitin, calculated with the relative viscosity, were about 701, 612, and 524 kDa, respectively. In the FTIR spectra, α‐chitin, β‐chitin, and γ‐chitin showed a doublet, a singlet, and a semidoublet at the amide I band, respectively. The solid‐state CP–MAS 13C NMR spectra revealed that α‐chitin was sharply resolved around 73 and 75 ppm and that β‐chitin had a singlet around 74 ppm. For γ‐chitin, two signals appeared around 73 and 75 ppm. From the X‐ray diffraction results, α‐chitin was observed to have four crystalline reflections at 9.6, 19.6, 21.1, and 23.7 by the crystalline structure. Also, β‐chitin was observed to have two crystalline reflections at 9.1 and 20.3 by the crystalline structure. γ‐Chitin, having an antiparallel and parallel structure, was similar in its X‐ray diffraction patterns to α‐chitin. The exothermic peaks of α‐chitin, β‐chitin, and γ‐chitin appeared at 330, 230, and 310, respectively. The thermal decomposition activation energies of α‐chitin, β‐chitin, and γ‐chitin, calculated by thermogravimetric analysis, were 60.56, 58.16, and 59.26 kJ mol?1, respectively. With the Arrhenius law, ln β was plotted against the reciprocal of the maximum decomposition temperature as a straight line; there was a large slope for large activation energies and a small slope for small activation energies. α‐Chitin with high activation energies was very temperature‐sensitive; β‐Chitin with low activation energies was relatively temperature‐insensitive. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3423–3432, 2004  相似文献   

9.
This study develops an operationally easy, efficient, and general 1,2‐trans β‐selective glycosylation reaction that proceeds in the absence of a C2 acyl function. This process employs chemically stable thioglycosyl donors and low substrate concentrations to achieve excellent β‐selectivities in glycosylation reactions. This method is widely applicable to a range of glycosyl substrates irrespective of their structures and hydroxyl‐protecting functions. This low‐concentration 1,2‐trans β‐selective glycosylation in carbohydrate chemistry removes the restriction of using highly reactive thioglycosides to construct 1,2‐trans β‐glycosidic bonds. This is beneficial to the design of new strategies for oligosaccharide synthesis, as illustrated in the preparation of the biologically relevant β‐(1→6)‐glucan trisaccharide, β‐linked Gb3 and isoGb3 derivatives.  相似文献   

10.
We synthesized a semiartificial β‐1,3‐glucan, curdlan with dialkylaniline groups (CUR‐DA), that bears chromophoric aromatic groups at its peripheral positions. Spectroscopic studies as well as microscopic observations indicate that CUR‐DA adopts a triple‐stranded helical structure in water‐ or methanol‐rich solutions of dimethyl sulfoxide (DMSO). This triple‐stranded helical structure exhibits high thermal stability and resistance to base, attributes that are similar to those of the triple‐stranded helical structure of native β‐1,3‐glucans such as schizophyllan. Moreover, we found that the stability of the triple‐stranded helical structure can be easily modulated by solvent composition and metal‐ion (Zn2+) binding. As β‐1,3‐glucan polysaccharides are known to serve as “polymeric” hosts, including certain DNA molecules, carbon nanotubes, and conjugated polymers, and complexation occurs only with the single‐stranded structure, this information is very useful for the creation of these attractive polymeric composites, the controlled release of DNA, and so on.  相似文献   

11.
Two‐photon photodynamic therapy is a promising therapeutic method which requires the development of sensitizers with efficient two‐photon absorption and singlet‐oxygen generation. Reported here are two new diketopyrrolopyrrole‐porphyrin conjugates as robust two‐photon absorbing dyes with high two‐photon absorption cross‐sections within the therapeutic window. Furthermore, for the first time the singlet‐oxygen generation efficiency of diketopyrrolopyrrole‐containing systems is investigated. A preliminary study on cell culture showed efficient two‐photon induced phototoxicity.  相似文献   

12.
Schizophyllan (SPG) is a natural β‐1,3‐glucan that forms a triple helix (t‐SPG) in neutral aqueous solutions and t‐SPG can be denatured to single chains (s‐SPGs) in DMSO or alkaline solutions. Exchanging the denatured solutions for neutral water leads the renaturation of the triple helix. We have reported that hydrophobic molecules can form a complex with s‐SPG when they are present in the renaturation process. Some of these, for example poly(dA) and polyaniline, were found to have aromatic amino moieties. This report demonstrates whether s‐SPG can interact with other aromatic amino compounds such as anilinonaphthalene sulfonic acid (ANS) derivatives. Enhanced fluorescence intensity and red‐shifted UV absorption spectra were observed in the mixture of s‐SPG and 2,6‐ANS or 2,6‐TNS. In the circular dichroism measurement, the positive Cotton effects appeared after mixing 2, 6‐ANS with s‐SPG. When the amino proton was replaced by the methyl group or used in intramolecular hydrogen bonds, any spectral changes were not observed. These results indicate that amino proton in the ANS derivatives plays a key role in the complexation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1440–1448, 2008  相似文献   

13.
The semi‐artificial branched‐polysaccharides, amylose‐grafted curdlans, were synthesized utilizing an enzymatic polymerization. Both a curdlan main chain and amylose side chains on the polysaccharides maintain the original helical structure as well as the molecular binding ability. Thanks to the difference in their molecular recognition properties between β‐1,3‐glucan chain and α‐1,4‐glucan chain, the amylose‐grafted curdlans can provide two different orthogonal binding sites within one polymeric system. When a water‐soluble polythiophene was mixed with the amylose‐grafted curdlan, the polythiophene was twisted in two different modes and therein, fluorescence energy of the polythiophene wrapped by the amylose side chains was successfully transferred to the polythiophene wrapped by the curdlan main chain. We thus concluded that in the dendritic superstructure of this polysaccharide, a self‐organized “Janus‐type FRET system” was successfully constructed.  相似文献   

14.
The present paper reports the first comprehensive study on the synthesis, structures, optical and electrochemical properties, and peripheral functionalizations of nickel(II) and copper(II) complexes of β‐unsubstituted 5,15‐diazaporphyrins (M‐DAP; M=Ni, Cu) and pyridazine‐fused diazacorrinoids (Ni‐DACX; X=N, O). These two classes of compounds were constructed starting from mesityldipyrromethane by a metal–template method. Ni‐DAP and Cu‐DAP were prepared in high yields by the reaction of the respective metal–bis(dibromodipyrrin) complexes with NaN3–CuX (X=I, Br), whereas Ni‐DACN and Ni‐DACO were formed as predominant products by the reaction with NaN3. In both cases, the metal centers change their geometry from tetrahedral to square planar during the aza‐annulation; X‐ray crystallographic analyses of M‐DAPs showed highly planar diazaporphyrin π planes. The Q band of Ni‐DAP was redshifted and intensified compared with that of a nickel–porphyrin reference, due to the involvement of electronegative nitrogen atoms at the meso positions. It was found that the peripheral bromination of Ni‐DAP and Ni‐DACO occurred regioselectively to afford Ni‐DAP‐Br4 and Ni‐DACO‐Br, respectively. These brominated derivatives underwent Stille reactions with tributyl(phenyl)stannane to give the corresponding phenylated derivatives, Ni‐DAP‐Ph4 and Ni‐DACO‐Ph. On the basis of the absorption spectra and X‐ray analysis, it has been concluded that the attached phenyl groups efficiently conjugate with the diazaporphyrin π system. The present results unambiguously corroborate that the β‐unsubstituted DAPs and DACXs are promising platforms for the development of a new class of π‐conjugated azaporphyrin‐based materials.  相似文献   

15.
The photochemical and photophysical properties of peripheral and nonperipheral zinc and indium phthalocyanines containing 7‐oxy‐3,4‐dimethylcoumarin synthesized were investigated in this study. 7‐Hydroxy‐3,4‐dimethylcoumarin ( 1 ) was synthesized via Pechmann condensation reaction and then the phthalonitrile derivatives [4‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 2 ) and 3‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 3 )] were synthesized by nucleophilic aromatic substitution. Phthalocyanine compounds containing coumarin units on peripheral ( 4 and 5 ) and nonperipheral ( 6 and 7 ) positions were prepared via cyclotetramerization of phthalonitrile compounds. All compounds' characterizations were performed by spectroscopic methods and elemental analysis. The phthalocyanine derivatives' ( 4–7 ) photochemical and photophysical properties were studied in DMF. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines ( 4 – 7 ) were studied in DMF. They produced good singlet oxygen (e.g., ΦΔ = 0.93 for 7 ) and showed appropriate photodegradation (in the order of 10?5), which is very important for photodynamic therapy applications.  相似文献   

16.
Fluorescence quenching processes of poly[2-methoxy-5-(2‘ethyl-hexoxy)-p-phenylene vinylene] (MEH-PPV) in solution by electron acceptors, O2 and acid, have been studied. Static quenching of the fluorescence from MEH-PPV by an electron acceptor (DDQ or TCNE) occurs due to electron transfer from MEH-PPV to the electron acceptor and this electron transfer quenching can be promoted by chloroform. Photooxidation takes place in the MEH-PPV solution and singlet oxygen is an intermediate in the photooxidation, according to the results of ESR spectroscopy. Acid also plays an important role in the fluorescence quenching process of MEH-PPV, by the protonation of the alkoxy groups in the molecular chain.  相似文献   

17.
We functionalize PbS nanocrystals with the organic semiconductor Zn β‐tetraaminophthalocyanine to design a nanostructured solid‐state material with frequent organic–inorganic interfaces. By transient absorption and fluorescence spectroscopy, we investigate the optoelectronic response of this hybrid material under near‐infrared excitation to find efficient charge transfer from the nanocrystals to the molecules. We demonstrate that the material undergoes cooperative sensitization of two nanocrystals followed by photon upconversion and singlet emission of the organic semiconductor. The upconversion efficiency resembles that of comparable systems in solution, which we attribute to the large amount of interfaces present in this solid‐state film. We anticipate that this synthetic strategy has great prospects for increasing the open‐circuit voltage in PbS nanocrystal‐based solar cells.  相似文献   

18.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

19.
The noncovalent interactions between 4′, 6‐diamidino‐2‐phenylindole (DAPI) and sulfobutylether β‐cyclodextrin (SBE7β‐CD) are evaluated by using photochemical measurements and compared with that of native β‐CD. Contrasting recognition behavior and intriguing modulations in the photochemical behavior of DAPI were observed. In particular, a large enhancement in the fluorescence emission and excited‐state lifetime were seen upon binding to SBE7β‐CD, with the SBE7β‐CD inclusion complex being approximately 1000 times stronger than that of β‐CD. The ensuing fluorescence “turn on” was demonstrated to be responsive to chemical stimuli, such as metal ions and adamantylanmine (AD). Upon addition of Ca2+/AD, nearly quantitative dissociation of the complex was established to regenerate the free dye and result in fluorescence “turn off”. The SO3? groups are believed to be critical for the strong and selective binding of the chromophore and the stimuli‐responsive tuning. This is as an important design criterion for the optimization of host–guest properties through supramolecular association, which is relevant for drug‐delivery applications.  相似文献   

20.
Reagent‐controlled chemo‐ and regioselective reduction of 5,15‐diazaporphyrins has been developed. The selective reduction of carbon–carbon double bonds of diazaporphyrins provides 18 π aromatic isobacteriochlorin‐type products, whereas the reduction of carbon–nitrogen double bonds leads to selective formation of 20 π N,N′‐dihydrodiazaporphyrins in excellent yields. The distinct antiaromatic character of N,N′‐dihydrodiazaporphyrins has been revealed. The free‐base N,N′‐dihydrodiazaporphyrin exhibits slower inner NH tautomerism than that in the corresponding 18 π porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号