首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report for the first time a microwave assisted, one pot, direct, and facile synthesis of monodispersed iron‐gold bimetallic nanoparticles (BNPAu‐Fe) using glucose as a reducing agent in merely 90 s. The as such synthesized BNPAu‐Fe were thoroughly characterized using UV‐Vis, XRD, TEM, EDX, elemental mapping, and raman spectroscopy. These BNPAu‐Fe were further impregnated with reduced graphene oxide (rGO) and coated onto glassy carbon electrode (GCE) to develop a sensor probe for label free electrochemical detection of acetaminophen, which is considered to be a most potent biomarker related to non‐alcoholic fatty liver disease. The sensor probe was systematically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The BNPAu‐Fe‐rGO nanocomposite matrix showed the sensing of acetaminophen with a wide dynamic range between 50 and 800 nM with detection limit (DL) of 0.14 nM (±0.05) nM (RSD<4.12 %) that was lower compared to previously reported acetaminophen sensors. To show the practical application of the sensor probe, acetaminophen was detected in human urine samples, which showed the percentage recovery between 86.65 % and 91.32 %. To the best of our knowledge, this is the first report where BNPAu‐Fe impregnated rGO was used to detect acetaminophen. Interferences due to various molecules such as glucose, serum albumin, glycine, glutamic acid, alanine, citric acid, and ascorbic acid were tested individually and in mixed sample. Long‐term stability of sensor probe was examined which was found to be stable up to 12 weeks. The sensor fabricated using BNPAu‐Fe‐rGO nanocomposite has many attractive features such as; simplicity, rapidity, and label free detection, hence it could be a method of choice for acetaminophen detection in clinical settings.  相似文献   

2.
A flexible composite paper Fe?Cu‐based metal‐organic framework (MOF)/reduced graphene oxide (rGO) (Fe?CuMOF/rGO) electrode was prepared by using a simple electrochemical method for the simultaneous detection of catechol (CC) and resorcinol (RC). Free‐standing, flexible and double‐sided Fe?CuMOF/rGO composite paper was obtained by applying the electrochemical deposition process on the rGO paper electrode in the solution containing Fe?CuMOF composite. The morphological analysis of Fe?CuMOF/rGO composite paper showed that sea urchin‐like structures formed on the rGO electrode surface consist of numerous sharp‐edged nanorods of Fe?CuMOF. Flexible Fe?CuMOF/rGO paper electrode exhibited high sensitivity, wide linear range and low detection limit for the simultaneous determination of CC and RC. The linear ranges of concentration for CC and RC were 0.1–800 and 0.1–720 μM, respectively, and the corresponding limits of detection (S/N=3) were 0.016 and 0.020 μM. The outstanding performance of this flexible electrode could be attributed to the sharp‐edged urchin‐like Fe?CuMOF structures which provide an increment of the surface area and the electrochemical activity of the composite paper electrode. Stability tests showed that Fe?CuMOF/rGO composite paper electrode has excellent flexibility, high durability, and good reproducibility. Furthermore, this electrode exhibited high sensitivity and selectivity for the determination of CC and RC in real sample analysis.  相似文献   

3.
We report for the first time sinapic acid (SA) sensing based on nanocomposite comprising electrochemically tuned gold nanoparticles (EAuNPs) and solvothermally reduced graphene oxide (rGO). The synthesized EAuNPs, rGO, and EAuNPs‐rGO nanocomposite were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), particle size analysis, and Raman spectroscopy. A proof‐of‐concept electrochemical sensor for SA was developed based on synthesized EAuNPs‐rGO nanocomposite, which was characterized by electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The developed sensor detected SA with a linear dynamic range (LDR) between 20 μM and 200 μM and detection limit (DL) of 33.43 (±0.21) nM (RSD<3.32 %). To show the useful purpose of the sensor probe in clinical applications, SA was detected in human urine samples, which showed the percentage recovery between 82.6 % and 92.8 %. Interferences due to various molecules such as L‐cystine, glycine, alanine, serum albumin, uric acid, citric acid, ascorbic acid, and urea were tested. Long‐term stability of the sensor probe was examined, which was found to be stable up to 6 weeks. The sensor fabricated using EAuNPs‐rGO nanocomposite has many attractive features such as; simplicity, rapidity, and label‐free detection; hence, it could be a method of choice for SA detection in various matrices.  相似文献   

4.
Mixed metals alloy nanoparticles supported on carbon nanomaterial are the most attractive candidates for the fabrication of non‐enzymatic electrochemical sensor with enhanced electrochemical performance. In this study, palladium‐manganese alloy nanoparticles supported on reduced graphene oxide (Pd?Mn/rGO) are prepared by a simple reduction protocol. Further, a novel enzyme‐free glucose sensing platform is established based on Pd?Mn/rGO. The successful fabrication of Pd?Mn alloy nanoparticles and their attachment at rGO are thoroughly characterized by various microscopic and spectroscopic techniques such as XRD, Raman, TEM and XPS. The electrochemical activity and sensing features of designed material towards glucose detection are explored by amperometric measurments in 0.1 M NaOH at the working voltage of ?0.1 V. Thanks to the newly designed Pd?Mn/rGO nanohybrid for their superior electrorochemical activity towards glucose comprising the admirable sensing features in terms of targeted selectivity, senstivity, two linear parts and good stability. The enhanced electrochemical efficacy of Pd?Mn/rGO electrocatalyst may be credited to the abundant elecrocatalytic active sites formed during the Pd?Mn alloying and the electron transport ability of rGO that augment the electron shuttling phenomenon between the electrode material and targeted analyte.  相似文献   

5.
Solvothermally synthesized cobalt sulphide/reduced graphene oxide (CoS/rGO) was used to fabricate an electrochemical sensor for detection of artemisinin. Microscopic techniques were used to characterize CoS/rGO nanocomposite. The electrochemical sensor was fabricated by modifying the surface of glassy carbon electrode with CoS/rGO nanocomposite. [Fe(CN)6]3−/4− was used as a mediator to aid oxidation of artemisinin. Differential pulse voltammetric technique was used for the detection of artemisinin. A linear range of 30–100 μM was used. Experimentally, a detection limit of 0.5 μM was obtained. Therefore, the developed sensor can be used for quality control of artemisinin.  相似文献   

6.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

7.
以溶剂热法制备Cu3(BTC)2为前驱体,通过两步转化得到Ag/CuS/rGO复合材料,构制了电化学传感器,研究了其对NO2^-离子的电催化行为,建立了测定NO2^-离子的电化学分析方法。Ag/CuS/rGO复合材料对NO2^-离子展现了良好的电催化性能,检测线性范围为1~50μmol/L和50~550μmol/L,检出限为0.04μmol/L(S/N=3)。该传感器具有制作简单、选择性好和检出限低的特点,拓展了金属有机框架材料(MOFs)在电化学领域的应用。  相似文献   

8.
《Electroanalysis》2017,29(2):587-594
A sensitive and selective hydrazine sensor was developed by β‐cyclodextrin modified palladium nanoparticles decorated reduced graphene oxide (PdNPs‐β‐CD/rGO) nanocomposite. The PdNPs‐β‐CD/rGO hybrid material was prepared by simple electrochemical method. The hydrophobic cavity of β‐CD ineracts with palladium nanoparticles by hydrophobic interaction and further it is uniformly assembled on the rGO surface through hydrogen bond formation, which is clearly confirmed by FT‐IR, FESEM and TEM. The high electrocatalytic activity of hydrazine oxidation was observed at −0.05 V (vs. Ag/AgCl) on PdNPs‐β‐CD/rGO modified electrode; due to the excellent stabilization, high catalytic activity and large surface area of the PdNPs‐β‐CD/rGO composite. The PdNPs‐β‐CD/rGO fabricated hydrazine sensor exhibited an excellent analytical performance, including high sensitivity (1.95 μA μM−1 cm−2), lower detection limit (28 nM) and a wide linear range (0.05 to 1600 μM). We also demonstrated that the PdNPs‐β‐CD/rGO nanocomposite modified electrode is a highly selective and sensitive sensor towards detection of hydrazine among the various interfering species. Hence, the proposed hydrazine sensor is able to determine hydrazine in different water samples.  相似文献   

9.
We fabricated a highly sensitive electrochemical sensor for the determination of bisphenol A (BPA) in aqueous solution by using reduced graphene oxide (RGO), carbon nanotubes (CNT), and gold nanoparticles (AuNPs)‐modified screen‐printed electrode (SPE). GO/CNT nanocomposite was directly reduced to RGO/CNT on SPE at room temperature. AuNPs were then electrochemically deposited in situ on RGO/CNT‐modified SPE. Under optimized conditions, differential pulse voltammetry (DPV) produced linear current responses for BPA concentrations of 1.45 to 20 and 20 to 1,490 nM, with a calculated detection limit of an ultralow 800 pM. The sensor response was unaffected by the presence of interferents such as phenol, p‐nitrophenol, pyrocatechol, 2,4‐dinitrophenol, and hydroquinone.  相似文献   

10.
Tungsten oxide (W) decorated titanium oxide (T) adsorbed onto a graphene (Gr) and modified the glassy carbon electrode for the electrochemical quantification of riboflavin (RF) in edible food and pharmaceuticals. For comparison, nanocomposites are formed using graphene oxide (GO), reduced graphene oxide (rGO) and pure graphite (G) sheets to study the electrochemical activities towards riboflavin. The ternary WTGr modified GCE shows the highest electrocatalytic activity due to synergetic interactions between the metal oxide and graphene. The electrochemical observations are supported by the SEM, HRTEM, XRD, UV-Vis, Zeta potential (ζ) and size data. The sensor shows a wide linear range 20 nM–2.5 μM with a detection limit 25.24 nM and sensitivity (4.249×10−8 A/nM). The fabricated sensor is validated in real samples.  相似文献   

11.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

12.
《Electroanalysis》2017,29(2):602-608
Pt−Au nanoclusters decorated on the surface of reduced graphene oxide (rGO/Pt−Au) was facilely prepared by one‐pot electrochemical reduction. The morphology and composition of rGO/Pt−Au composites had been characterized by scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectrometry (EDX), fourier transform‐infrared spectroscopy (FT‐IR) and electrochemical methods. Ofloxacin is a member of synthetic quinolones which has been widely used for the treatment of common diseases in humans and animals. The performance of the rGO/Pt−Au nanocomposite toward the oxidation of ofloxacin was compared with the other similar nanostructures like rGO/Pt and rGO/Au. In the optimized conditions, two linear calibration curves were obtained, from 0.08 to 10 μM and 10 to 100 μM ofloxacin. A detection limit of 0.05 μM ofloxacin was observed at pH 5.7 for the GCE/rGO/Pt−Au. The proposed sensor was successfully applied to determine ofloxacin in tablets and human urine samples and the results were satisfactory.  相似文献   

13.
《Electroanalysis》2017,29(8):1961-1967
In this study, the electrodeposition of nickel hydroxide nanoparticles onto a screen‐printed electrode (Ni(OH)2/SPE) is described. Ni(OH)2/SPE is proposed as an alternative non‐enzymatic glucose sensor based on Electrochemical Impedance Spectroscopy (EIS) measurements.The SPEs were modified by the cathodic electrodeposition of nickel, from a solution containing 0.010 M Ni(NO3)2 and 1 M NH4Cl, at −1.3 V for 60 seconds. The SEM images show a uniform distribution of nickel spherical nanoparticles, with 60 nm average particle size. However, such morphology is not observed when the electrodeposition occurs in the absence of NH4Cl. The electrochemical properties of the sensor were carefully evaluated by Cyclic Voltammetry. Ni(OH)2/SPE shows a remarkable electrocatalytic behavior towards the oxidation of glucose in 0.1 M KOH. EIS measurements were carried out for Ni(OH)2/SPE and a single‐frequency impedance method is proposed as transduction principle for glucose determination. The analysis of each parameter of complex impedance was performed. The best linear response was obtained for the module of impedance (|Z|) in the range of 0–2 mM of glucose at 0.1 Hz (R2=0.992) with a slope of 0.137 KΩ−1⋅mM−1 of glucose. Finally, Ni(OH)2/SPE was utilized for quantification of glucose in blood samples.  相似文献   

14.
利用电化学还原氧化石墨烯(GO)的方法将石墨烯(rGO)固定在电极表面上,然后电沉积氢氧化铜和氢氧化镍复合物,构成石墨烯/金属氢氧化物复合纳米材料修饰的玻碳电极(GCE),并通过电聚合天青Ⅰ将辣根过氧化酶(HRP)固定在GCE/rGO/Cu(OH)_2-Ni(OH)_2表面,制得GCE/rGO/Cu(OH)_2-Ni(OH)_2/HRP-PA。对石墨烯/金属氢氧化物复合纳米材料进行了SEM和能谱表征。通过电化学阻抗法和循环伏安法对传感器的制备过程和电化学性能进行了研究,并进一步分别对过氧化氢叔丁基(BHP)及过氧化氢异丙苯(CHP)进行了分析测定。该传感器对BHP和CHP具有良好的检测效果,在2.0×10~(-5)~9.2×10~(-4)mol/L范围内响应电流与BHP浓度呈良好的线性关系,检出限为9.9×10~(-6)mol/L;在3.0×10~(-6)~1.0×10~(-4)mol/L范围内响应电流与CHP浓度呈良好的线性关系,检出限为6.9×10~(-7)mol/L。  相似文献   

15.
《Analytical letters》2012,45(16):2506-2523
Abstract

A sensitive and selective electrochemical sensor based on electropolymerized molecularly imprinted polypyrrole and gold nanoparticles–multiwalled carbon nanotubes (AuNPs–MWCNTs) hybrid nanocomposites was developed for the determination of tetrabromobisphenol A (TBBPA). A glassy carbon electrode (GCE) was modified with MWCNTs, and the AuNPs–MWCNTs/GCE was prepared by an electrodeposition method in HAuCl4 solution. The AuNPs–MWCNTs nanocomposite showed high electrocatalytic activity, good conductivity, and sufficient reactive sites for the direct electro-oxidation of TBBPA. The molecularly imprinted polymers (MIPs) as recognition elements were synthesized through in situ electro-polymerization of pyrrole as functional monomers in the presence of the TBBPA template molecules. Under the optimal conditions, the developed sensor exhibited good selectivity towards TBBPA compared with structural analogs, high sensitivity, and excellent producibility. The electrochemical responses of the sensor toward TBBPA were obtained in the linear range from 0.5?nM to 1?μM with a limit of detection equal to 0.24?nM at a signal-to-noise ratio of 3.  相似文献   

16.
A reduced graphene oxide/platinum(II) tetraphenylporphyrin nanocomposite (RGO/Pt‐TPP)‐modified glassy carbon electrode was developed for the selective detection of hydrazine. The RGO/Pt‐TPP nanocomposite was successfully prepared via noncovalent π–π stacking interaction. The prepared nanocomposite was characterized using nuclear magnetic resonance, electrochemical impedance, ultraviolet–visible and Raman spectroscopies, scanning electron microscopy and X‐ray diffraction. The electrochemical detection of hydrazine was performed via cyclic voltammetry and amperometry. The RGO/Pt‐TPP nanocomposite exhibited good electrocatalytic activity towards detection of hydrazine with low overpotential and high oxidation peak current. The fabricated sensor exhibited a wide linear range from 13 nM to 232 μM and a detection limit of 5 nM. In addition, the fabricated sensor selectively detected hydrazine even in the presence of 500‐fold excess of common interfering ions. The fabricated electrode exhibited good sensitivity, stability, repeatability and reproducibility. In addition, the practical applicability of the sensor was evaluated in various water samples with acceptable recoveries.  相似文献   

17.
《Electroanalysis》2017,29(8):1918-1924
A highly sensitive and selective electrochemical biomimetic sensor was fabricated for fast detection of chloramphenicol (CAP) in honey and milk samples. Platinum thin‐film microelectrode (Pt TFME), which could provide unique electrochemical properties and achieve measurement using very limited solution volumes, was surface‐modified by electropolymerizing o‐phenylenediamine. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the preparation process of CAP‐imprinted poly(o‐phenylenediamine) film and rebinding ability of CAP into the imprinted cavities. The electrochemical properties of the sensor were further investigated with square wave voltammetry (SWV) by using K3Fe(CN)6 as an electroactive probe. The current difference of oxidation peaks of K3Fe(CN)6 had a good linear relationship with the concentration of CAP in the range of 0.9–10 nM. The detection limit was 0.39 nM based on the signal to noise ratio of 3. The developed sensor was successfully applied to determine CAP in honey and milk samples, and the result was in good agreement with that obtained by high performance liquid chromatography‐mass spectrometry (HPLC‐MS). The sensor showed high sensitivity and excellent selectivity to CAP in comparison to other structurally related and/or normally existing antibiotics, and demonstrated great promise for the rapid quantification of CAP in real food samples and field analysis.  相似文献   

18.
Platinum nanoparticles–reduced graphene oxide composite-modified glassy carbon electrode (PtNPs–rGO/GCE) was developed as a simple, selective and sensitive electrochemical sensor for determination of picric acid (PA). Cyclic voltammogram (CV) of PA showed three well-defined irreversible reduction peaks at the potentials of ?0.43, ?0.57 and ?0.66 V versus Ag/AgCl. In this work, the interference effect of other nitrophenol compounds (NPhCs) was significantly reduced by appropriate adjusting of pH. Square wave voltammetry was used for quantification of PA in the range of 5–500 µM (1.15–115 mg L?1) with practical detection limit of 1 µM (0.23 mg L?1). The proposed sensor was successfully applied for the determination of PA in two natural water samples.  相似文献   

19.
Wang  Minghua  Zhang  Shuai  Ye  Zihan  Peng  Donglai  He  Linghao  Yan  Fufeng  Yang  Yanqin  Zhang  Hongzhong  Zhang  Zhihong 《Mikrochimica acta》2015,182(13):2251-2258

Multilayered reduced graphene oxide (rGO) was functionalized with amino groups by treatment with nitrogen plasma. Raman spectroscopy showed plasma treatment not to substantially alter the chemical structure of rGO and that a wide range of functional nitrogen groups is evenly incorporated into the carbon lattice. The amino-modified rGO was used to design an electrochemical biosensor in which a DNAzyme, substrate DNA and Pb(II) and Hg(II) binding DNA were immobilized on the amino-rGO placed on a gold electrode. The high concentration of amino groups and the rough surface of the rGO favor DNA immobilization. Heavy metal ions are bound to the surface via specific interaction between DNA and the two ions which are detected by electrochemical impedance spectroscopy at a potential of 0.2 V (vs. Ag/AgCl). The detection limits for Pb(II) and Hg(II) are as low as 7.8 and 5.4 pM, respectively, and the analytical ranges extend from 0.01 to 100 nM. The sensor is highly specific and stable and therefore represents a highly promising tool for use in environmental monitoring.

A nanofilm of reduced graphene oxide was first modified with amino groups by treatment with nitrogen plasma. A special DNA was then anchored to the surface to obtain a biosensor for simultaneous detection of Pb(II) and Hg(II). The sensor has detection limits as low as 7.8 and 5.4 pM and is highly selective.

  相似文献   

20.
Weiss DJ  Lunte CE 《Electrophoresis》2000,21(10):2080-2085
8-Hydroxydeoxyguanosine (8-OHdG) is present in urine as a result of oxidative DNA damage associated with age-related diseases such as cancer. In this report a method is presented for the detection of 8-OHdG in human morning urine utilizing capillary electrophoresis with electrochemical detection (CEEC). The limit of detection for a aqueous standard of 8-OHdG is 50 nM (signal to noise ratio S/N = 3). A single solid-phase extraction (SPE) step with a C18 column is used for sample cleanup and 20-fold preconcentration of the urine before analysis by CEEC. Optimized conditions for analysis of extracted urine are E(app) = 0.5 V vs. Ag/AgCl with 20 mM sodium borate/20% MeOH v/v, pH 9, as the background electrolyte, and a separation voltage of 22 kV. The concentration of 8-OHdG varied from 6 to 86 nM with an average value of 42 +/- 26.9 nM for four healthy female and four healthy male subjects between the ages of 23 and 43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号