首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, there have been rapid advances in the synthesis of lead halide perovskite nanocrystals (NCs) for use in solar cells, light emitting diodes, lasers, and photodetectors. These compounds have a set of intriguing optical, excitonic, and charge transport properties, including outstanding photoluminescence quantum yield (PLQY) and tunable optical band gap. However, the necessary inclusion of lead, a toxic element, raises a critical concern for future commercial development. To address the toxicity issue, intense recent research effort has been devoted to developing lead‐free halide perovskite (LFHP) NCs. In this Review, we present a comprehensive overview of currently explored LFHP NCs with an emphasis on their crystal structures, synthesis, optical properties, and environmental stabilities (e.g., UV, heat, and moisture resistance). In addition, strategies for enhancing optical properties and stabilities of LFHP NCs as well as the state‐of‐the‐art applications are discussed. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high‐quality LFHP NCs for a broader range of fundamental research and practical applications.  相似文献   

2.
Lead halide hybrid perovskites have received massive research attention because of their unique inherent photophysical properties that driven them for potential application in the fields of photovoltaics, light-emitting devices, lasing, X-ray detector, and so on. Perovskite single crystals and nanocrystals are generally synthesized via various low-cost solution-processed techniques. The emergence of simple growth approaches of perovskite structures enable to fabricate low-cost and highly efficient devices. However, toxicity of Pb atoms and instability of perovskite structures obstruct further commercialization of these technologies. Recent efforts have been shifted to discover novel, eco-friendly, and stable lead-free metal halide perovskite (LFHP) materials and exploring their different growth processes for various device applications. This review aims to provide an up-to-date analysis of recent progress report on LFHPs and will mainly focus on their growth processes in the single crystalline and nanocrystalline forms. This review also tries to understand how the perovskite crystal structure impacts on their fundamental properties. In addition, we discuss the current progress in various field of applications and their future aspects.  相似文献   

3.
Flexible perovskite solar cells have attracted widespread research effort because of their potential in portable electronics. The efficiency has exceeded 18 % owing to the high‐quality perovskite film achieved by various low‐temperature fabrication methods and matching of the interface and electrode materials. This Review focuses on recent progress in flexible perovskite solar cells concerning low‐temperature fabrication methods to improve the properties of perovskite films, such as full coverage, uniform morphology, and good crystallinity; demonstrated interface layers used in flexible perovskite solar cells, considering key figures‐of‐merit such as high transmittance, high carrier mobility, suitable band gap, and easy fabrication via low‐temperature methods; flexible transparent electrode materials developed to enhance the mechanical stability of the devices; mechanical and long‐term environmental stability; an outlook of flexible perovskite solar cells in portable electronic devices; and perspectives of commercialization for flexible perovskite solar cells based on cost.  相似文献   

4.
Perovskite lead halides (CH3NH3PbI3) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead‐free semiconducting hybrid ferroelectric is reported, N‐methylpyrrolidinium)3Sb2Br9 ( 1 ), which consists of a zero‐dimensional (0‐D) perovskite‐like anionic framework connected by corner‐ sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm?2, as well as notable semiconducting properties, including positive temperature‐dependent conductivity and ultraviolet‐sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0‐D perovskite‐like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite‐like hybrids, especially lead‐free semiconducting ferroelectrics.  相似文献   

5.
Colloidal nanocrystals (NCs) of metal halide perovskite have recently aroused great research interest, due to their remarkable optical and electronic properties. We report a solution synthesis of a new member in this category, that is, all‐inorganic lead‐free cesium germanium iodine (CsGeI3) perovskite NCs. These CsGeI3 colloidal NCs are confirmed to adopt a rhombohedral structure. Moreover, the electron beam‐induced transformations of these lead‐free perovskite NCs have been investigated for the first time. The fracture of single‐crystalline CsGeI3 nanocubes occurs first, followed by the emergence and growth of cesium iodine (CsI) single crystals and the final fragmentation into small debris with random orientations. Notably, the electron‐reduced Ge species in CsGeI3 nanocubes exhibit a distinctive transformation path, compared to heavier Pb atoms in lead halide perovskite NCs.  相似文献   

6.
Metal oxides are some of the most promising candidates as electrocatalysts for electrical‐energy‐storage (EES) systems. Particularly, perovskite and pyrochlore oxides have been intensively investigated as bifunctional electrocatalysts because of their superior catalytic activities during the oxygen‐reduction and ‐evolution reactions. However, the origin of the outstanding catalytic activities and structural changes of the materials are not clear, in part due to the difficulty in identification during electrocatalysis. In this Minireview, we present a critical overview of recent progress in understanding catalytic mechanisms of perovskite and pyrochlore oxides, highlighting the innovative in‐situ X‐ray absorption spectroscopy (XAS) analysis for electrochemical tests.  相似文献   

7.
Perovskite solar cells (PSCs) fabricated with two-dimensional (2D) halide and 2D-3D mixed-halide materials are remarkable for their optoelectronic properties. The 2D perovskite structures are extremely stable but show limited charge transport and large bandgap for solar cell applications. To overcome these challenges, multidimensional 2D-3D perovskite materials are used to maintain simultaneously, a long-term stability, and high performance. In this review, we discuss the recent progress and the advantages of 2D and 2D-3D perovskite materials as absorber for solar cell applications. First, we discuss the structure and the unique properties of 2D and multidimensional 2D-3D perovskites materials. Second, the stability of 2D and 2D-3D mixed perovskites and the perspects of PSCs are hashed out.  相似文献   

8.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

9.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

10.
Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all‐solid‐state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber‐shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3 %, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large‐scale application by well‐developed textile technologies.  相似文献   

11.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

12.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

13.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

14.
钙钛矿太阳能电池因其光吸收效率高、载流子寿命长、晶格缺陷容忍度高、能带可调等优点得到迅速发展,在短短几年内其太阳能转化效率已经达到22.1%。然而,在人们看到钙钛矿太阳能电池广阔发展前景的同时,其铅毒性和不稳定性严重限制了它的应用推广。无机非铅钙钛矿太阳能电池(ABX_3、A_2BB′X_6等)利用Sn、Ge、Bi、Ag等金属取代铅,以Cs、Rb等取代甲胺有希望解决目前钙钛矿太阳能电池的毒性和稳定性问题。本文主要对近几年无机非铅钙钛矿太阳能电池的研究现状做一个分析总结,并对其发展前景进行展望。  相似文献   

15.
陈海宁 《应用化学》2018,35(8):916-924
由于具有成本低、工艺简单等优点,有机-无机杂化太阳能电池(PSCs)的研究和发展受到了广泛的关注,光电转换效率也快速提升到与传统晶体硅太阳能电池相当的水平。 然而,PSCs稳定性差的问题严重限制了其商业化。 在各种PSCs中,基于碳电极的无空穴传输层器件(C-PSCs)去除了影响稳定性的有机空穴传输层和金属电极,使得器件稳定性得到了明显的提高,是最具有应用前景的电池器件之一。 自从2013年首次报道以来,C-PSCs的各方面研究取得了很大的进展,效率也从最初的6.6%提高到现在的15.9%。 本综述将系统地介绍C-PSCs的最新研究进展,包括器件结构和工作原理、各部分研究进展(电子传输层、钙钛矿薄膜和碳电极),以及存在的问题和解决方案。  相似文献   

16.
Organic-inorganic lead halide perovskite solar cells have captured significant attention in recent years due to low processing costs and unprecedented development in power conversion efficiency (PCE). It has appeared from 2009 with PCE of 3.8% to being claimed more than 25.2% PCE in a very short span of time, showing their future prospective toward the fabrication of less expensive and stable solar cells. The incredible advancement in this technology encourages at one end, whereas several hurdles restricting its complete utilization for commercial purposes at another end. Although the selection of perovskite structure is limited with planar and mesoporous electron transport layers (ETLs), but identification of appropriate ETLs necessitates excellent effort to improve the surface morphology of absorber and obtain enhanced PCE with higher stability. In the present review, we have investigated various inorganic-organic ETLs with different device configurations of PSCs, primarily focusing on crystallization and morphology control techniques of ETL thin films. Numerous strategies such as surface functionalization, doping, and addition of interfacial layer are adopted for ETLs, and their effect on device efficiency, performance, and hysteresis is also discussed in detail. Additionally, designs of PSCs with different device configurations are discussed as well, providing future guidelines for significant progress in PSCs structure with different ETLs.  相似文献   

17.
贾梦珠  吕功煊 《分子催化》2020,34(4):334-340
钙钛矿太阳能电池因具有成本低、制备容易和光电性能优异等突出特点受到了广泛关注.钙钛矿太阳能电池能量转化效率已从2009年的3.8%提升到2019年的25.2%.我们在文中重点总结了钙钛矿电池吸收层的制备工艺,掺杂和晶体组成、结构调控方面取得的重要进展,以及这些突破对电池效率提高的贡献,同时也提出了钙钛矿太阳能电池发展仍需要解决的问题.  相似文献   

18.
金属卤素钙钛矿是目前最有前景的高效低成本新型太阳能电池材料,但是目前还存在环境友好性和理论效率极限较低的问题。锡钙钛矿环境友好,而且其带隙更窄理论转换效率更高,吸引了广泛的关注。锡钙钛矿太阳能电池(TPSC)近年来发展迅速,是目前效率最高的无铅钙钛矿太阳能电池。本文先介绍了锡钙钛矿的晶体结构、能带结构和光电性质,然后总结了最近在锡钙钛矿领域有代表性的工作和提高光电转化效率的策略,最后讨论了锡钙钛矿发展面临的挑战和未来的发展方向。  相似文献   

19.
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号