首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An intermediate‐template‐directed method has been developed for the synthesis of quasi‐one‐dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core–shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7Au PABNTs showed higher electrocatalytic activity and durability in the oxygen‐reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero‐nanostructures with controlled size and shape by utilizing an intermediate template.  相似文献   

3.
The synthesis of ultrathin face‐centered‐cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal‐close‐packed (hcp) Au square sheets (AuSSs). The Pt‐layer growth results in a hcp‐to‐fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f‐oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.  相似文献   

4.
A detailed study of electrocatalytic properties of Au@Pt nanoparticles (NPs) as functions of Pt shell packing density and Au core size in terms of CO/methanol oxidation and oxygen reduction reactions is reported here. While most samples studied showed inferior catalytic activities to those of the commercial Pt black that fall reasonably well in a d-band-center up-shift (i.e., stronger surface bonding) regime, the steepest activity recovery trend as manifested by the smallest Au-core samples suggests a plausible transition to a d-band-center down-shift (i.e., weaker surface bonding) regime as the Au core becomes smaller.  相似文献   

5.
以100 nm的Au粒子为核,抗坏血酸为还原剂,H2PtCl6·6H2O为前驱体,合成了Pt包Au核壳结构纳米粒子( Au@ Pt)及其修饰的玻碳(GC)电极(Au@ Pt/GC).采用旋转圆盘电极等常规电化学方法,比较了Au@ Pt/GC和商用碳载铂(Pt/C)修饰的玻碳电极(Pt/C/GC)催化O2还原反应活性及耐甲醇性能,发现Au@ Pt纳米粒子在铂用量很低的情况下,其催化O2还原反应活性仍与商用Pt/C相当,而且还具有优良的耐甲醇性能;其催化O2还原反应机理按O2直接还原成H2O的四电子历程进行.  相似文献   

6.
乙醇由于具有无毒、理论能量密度高、易存储等优点,被广泛用于直接醇类燃料电池研究.乙醇电氧化是直接醇类燃料电池中重要的阳极反应,通常涉及C1和C2反应路径.C1路径中乙醇分子主要转化成二氧化碳,但该过程涉及C-C键断裂,会有COad和CH(x)ad等中间体产生;C2路径中乙醇分子转化成乙醛,最终转化成乙酸或乙酸根.为提升...  相似文献   

7.
Pt nanodots were formed on Au nanorods (NRs) by using a simple seed-mediated growth. Their density and distribution on the Au NR can be finely tuned by varying the reaction parameters. At lower Pt/Au ratios, the Pt nanodots mainly appear at endcaps and side edges of the Au rod. At higher Pt/Au ratios, they distribute homogeneously over the whole Au rod. The obtained Pt nanostructure is a single crystal owing to the epitaxial growth of Pt on the Au rod. Due to the unique surface plasmon resonance (SPR) features of the Au NRs, the Au core/Pt shell (Au@Pt) nanostructures also exhibit well-defined and red-shifted longitudinal SPR bands in the visible and near-infrared region. The position and intensity can be regulated by the thickness and amount of the Pt shell. At a thinner Pt thickness, the Au@Pt NRs show higher dielectric sensitivity than the corresponding Au NRs. It thus opens up the potential of Pt nanostructures for SPR-based sensing.  相似文献   

8.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

9.
Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions.The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process.The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte.The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution.The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential.The enhanced activity may be due to the electronic effect from the Au core, and the bifunctional reaction mechanism. © 2018 Journal of Electrochemistry. All rights reserved.  相似文献   

10.
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)‐step‐like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the C?C bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.  相似文献   

11.
Addition of some other metals to platinum causes significant increase of its catalytic activity towards ethanol electrochemical oxidation. This may be caused by different adsorption of CO molecules on the surface of the catalyst, and hence different resistance of the M@Pt nanostructures to poisoning by CO. In this work we attempt to verify this hypothesis analyzing vibrational spectra of CO adsorbed on various metal nanoparticles. Au@Pt nanoparticles revealing significantly higher catalytic activity towards ethanol oxidation than one-element Pt nanoparticles have been synthesized. Surface-enhanced infrared absorption (SEIRA) spectra of CO adsorbed on Au@Pt and Pt nanoparticles have been measured. Obtained spectra were very similar, which suggests that the higher catalytic activity of Au@Pt nanoparticles is rather not caused by different adsorption of CO molecules on Pt and Au@Pt nanoparticles. We suppose that better performance of core–shell M@Pt nanoparticles than one elements Pt nanoparticles towards ethanol electrochemical oxidation can be explained as follows: core–shell nanoparticles are probably much more defected than one-element nanoparticles, hence the M@Pt nanoparticles posses greater number of active sites (kinks, adatoms, and so on) for ethanol electrochemical oxidation. Analysis of the catalytic activity and CO adsorption have been also carried out for other nanoparticles including: Sn@Pt, Pb@Pt, Pd, Au@Pd, Sn@Pd and Pb@Pd. Density functional theory (DFT) calculations of CO modes for CO adsorbed on tetrahedral Pt10 or Pd10 clusters with different metal–metal distance have been also performed.  相似文献   

12.
Nanoscale Ptshell–Aucore/C with a controlled shell thickness was successfully synthesized based on a successive reduction strategy. With a Au core size of 4.8 nm, a complete Pt shell of thickness ∼0.6 nm was formed at Pt/Au mole ratio 1:1. The complete coverage of Au core with Pt shell was suggested by various techniques including TEM, UV–vis and cyclic voltammetry. A higher specific activity compared to conventional Pt/C was demonstrated using the probe reaction of methanol electro-oxidation, proving the improved Pt utilization with this core-shell structure.  相似文献   

13.
Core-shell Au-Pt nanoparticles with intimate contact of Pt and Au were prepared by a displacement reaction without formation of monometallic Au nanoparticles. The Au-Pt nanoparticles were dispersed on carbon (Au@Pt/C) and were used to catalyze methanol electrooxidation in acidic solutions at room temperature. The core-shell nanostructure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy, and specific catalytic activities were evaluated by CO anodic stripping voltammetry in 0.5 M H(2)SO(4) and by cyclic voltammetry in 1 M CH(3)OH + 0.5 M H(2)SO(4). The Au@Pt/C catalyst demonstrated enhanced specific activity in methanol electrooxidation and showed multiple CO stripping peaks which were all negatively shifted with respect to a similarly prepared Ag@Pt/C catalyst. The activity enhancement is attributed to the presence of Au underneath a very thin Pt shell where electron exchange between Au and Pt had promoted the formation of active oxygen species on Pt, which facilitated the removal of inhibiting CO-like reaction intermediates.  相似文献   

14.
应用两步化学还原法合成不同壳层厚度的Fecore-Ptshell纳米粒子,并用SEM、TEM、EDS和XRD手段对其进行物理表征,应用动电位、交流阻抗和循环伏安法进行氧还原电催化活性及抗甲醇性测试。结果表明,样品Fecore-Ptshell纳米颗粒粒径分布集中,其中Fecore,1-Ptshell,0.5平均值为50nm,核芯直径约34nm,壳层厚度约8nm;与Pt/C相比,Fecore-Ptshell/C对氧还原的催化活性和抗甲醇性明显提高,Fe与Pt原子比为1:0.5的Fecore-Ptshell/C在0.5mol·L-1H2SO4中氧还原的最大峰电流密度可达到184.7mA·mg-1,是相同反应条件下Pt/C电流密度的1.45倍,抗甲醇性显著提高。  相似文献   

15.
钯催化剂对碱性溶液的乙醇电催化氧化反应表现较好的催化活性. 本文通过简单的化学沉积法,将钯原子成功修饰到金纳米颗粒表面,制备的催化剂对乙醇电催化氧化反应表现出比钯更好的催化性能. 研究发现,钯原子不均匀地覆盖在金核表面,部分金原子暴露在外层. 制备的催化剂的峰电流密度是钯催化剂的4.6 倍,起始电势低100 mV. 该催化剂较好的催化性能可能归因于金核的电子效应和表面双功能电催化反应机制.  相似文献   

16.
The development of superior non‐platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen‐reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells, but still a great challenge. Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu‐based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo. Under the dual tuning on the composition and intermetallic phase, the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol‐oxidation reaction (EOR) than those of disordered PdCuM NPs, the commercial Pt/C and Pd/C catalysts. The density functional theory (DFT) calculations reveal that the improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on the Pd surface owing to the smaller atomic size of Cu, Co, and Ni.  相似文献   

17.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

18.
The crucial issue restricting the application of direct ethanol fuel cells (DEFCs) is the incomplete and sluggish electrooxidation of ethanol due to the chemically stable C−C bond thereof. Herein, a unique ethylene-mediated pathway with a 100 % C1-selectivity for ethanol oxidation reaction (EOR) is proposed for the first time based on a well-structured Pt/Al2O3@TiAl catalyst with cascade active sites. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) and differential electrochemical mass spectrometry (DEMS) analysis disclose that ethanol is primarily dehydrated on the surface of Al2O3@TiAl and the derived ethylene is further oxidized completely on nanostructured Pt. X-ray absorption and density functional theory (DFT) studies disclose the Al component doped in Pt nanocrystals can promote the EOR kinetics by lowering the reaction energy barriers and eliminating the poisonous species. Strikingly, Pt/Al2O3@TiAl exhibits a specific activity of 3.83 mA cm−2Pt, 7.4 times higher than that of commercial Pt/C and superior long-term durability.  相似文献   

19.
High-entropy alloy nanoparticles (HEA NPs) have aroused great interest globally with their unique electrochemical, catalytic, and mechanical properties, as well as diverse activity and multielement tunability for multi-step reactions. Herein, a facile low-temperature synthesis method at atmospheric pressure is employed to synthesize Pd-enriched-HEA-core and Pt-enriched-HEA-shell NPs with a single phase of face-centred cubic structure. Interestingly, the lattice of both Pd-enriched-HEA-core and Pt-enriched-HEA-shell enlarge during the formation process of HEA, with tensile strains included in the core and shell of HEA. The as-obtained PdAgSn/PtBi HEA NPs show excellent electrocatalytic activity and durability for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The specific (mass) activity of PdAgSn/PtBi HEA NPs for MOR is 4.7 mA cm−2 (2874 mA mg(Pd+Pt)−1), about 1.7 (5.9) and 1.5 (4.8) times higher than that of commercial Pd/C and Pt/C catalysts, respectively. Additional to high-entropy effect, Pt sites and Pd sites on the interface of the HEA act synergistically to facilitate the multi-step process towards EOR. This study offers a promising way to find a feasible route for scalable HEA manufacturing with promising applications.  相似文献   

20.
We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1?xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号