首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3D co-culture microfluidic device was developed to study the effects of ECM stiffness and TAMs on tumor cells migration.  相似文献   

2.
Shiqi Chang  Jing Wen  Yue Su  Huipeng Ma 《Electrophoresis》2022,43(13-14):1466-1475
At present, the probability that a new anti-tumor drug will eventually succeed in clinical trials is extremely low. In order to make up for this shortcoming, the use of a three-dimensional (3D) cell culture model for secondary screening is often necessary. Cell spheroid is the easiest 3D model tool for drug screening. In this study, the microfluidic chip with a microwell array was manufactured, which could allow the formation of tumor spheroids with uniform size and easily retrieve cell spheroids from the chip. Cell spheroids were successfully cultured for over 15 days and the survival rate was as high as 80%. Subsequently, cellular response to the ursolic acid (UA) was observed on the chip. Compared to the monolayer culture cells in vitro, the tumor spheroids showed minor levels of epithelial-mesenchymal transition fluctuation after drug treatment. The mechanism of cell spheroid resistance to UA was further verified by detecting the expression level of upstream pathway proteins. But the invasive ability of tumor spheroids was attenuated when the duration of action of UA extended. The anti-cancer effect of UA was innovatively evaluated on breast cancer by using the microfluidic device, which could provide a basis and direction for future preclinical research on UA.  相似文献   

3.
Lee KH  No da Y  Kim SH  Ryoo JH  Wong SF  Lee SH 《Lab on a chip》2011,11(6):1168-1173
Here, we present a novel and simple process of spheroid formation and in situ encapsulation of the formed spheroid without intervention. A hemispherical polydimethylsiloxane (PDMS) micromold was employed for the formation of uniform sized spheroids and two types of nano-porous membrane were used for the control of the crosslinking agent. We characterized the transport properties of the membrane, and the selection of alginate hydrogel as a function of gelation time, alginate concentration, and membrane type. Using the developed process and micromold, HepG2 cell spheroids were successfully formed and encapsulated in alginate without replating. This method allows spheroid encapsulation with minimal damage to the spheroid while maintaining high cell viability. We demonstrate the feasibility of this method in developing a bio-artificial liver (BAL) chip by evaluating viability and function of encapsulated HepG2 spheroids. This method may be applied to the encapsulation of several aggregating cell types, such as β-cells for islet formation and stem cells for embryonic body preservation, or as a model for tumor cell growth and proliferation in a 3D hydrogel environment.  相似文献   

4.
Jin HJ  Cho YH  Gu JM  Kim J  Oh YS 《Lab on a chip》2011,11(1):115-119
This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers. The present spheroid chip, having two PDMS layers, uses removable cell trapping barriers, thereby making it easy to form and extract uniform and small-sized spheroids. We have designed, fabricated and characterized a 4 × 1 spheroid chip, where membrane cell trapping barriers are inflated at a pressure of 50 kPa for spheroid formation and are deflated at zero gauge pressure for simple and safe extraction of the spheroids formed. In this experimental study, the cell suspension of non-small lung cancer cells, H1650, is supplied to the fabricated spheroid chip in the pressure range 145-155 Pa. The fabricated spheroid chips collect the cancer cells in the cell trapping regions from the cell suspension at a concentration of 2 × 10(6) ml(-1), thus forming uniform 3D spheroids with a diameter of 197.2 ± 11.7 μm, after 24 h incubation at 5% CO(2) and 37°C environment. After the removal of the cell trapping barriers, the spheroids formed were extracted through the outlet ports at a cell inlet pressure of 5 kPa. The cells in the extracted spheroids showed a viability of 80.3 ± 7.7%. The present spheroid chip offers a simple and effective method of obtaining uniform and small-sized 3D spheroids for the next stage of cell-based biomedical research, such as gene expression analysis and spheroid inoculation in animal models.  相似文献   

5.
Context‐dependent signaling is a ubiquitous phenomenon in nature, but ways to mimic the essence of these nano‐ and microscale dynamic molecular processes by noncovalent synthesis in the cellular environment have yet to be developed. Herein we present a dynamic continuum of noncovalent filaments formed by the instructed assembly (iA) of a supramolecular phosphoglycopeptide (sPGP) as context‐dependent signals for controlling the death and morphogenesis of cells. Specifically, ectophosphatase enzymes on cancer cells catalyze the formation of sPGP filaments to result in cell death; however, damping of the enzyme activity induces the formation 3D cell spheroids. Similarly, the ratio of stromal and cancer cells in a coculture can be used to modulate the expression of the ectophosphatase, so that the iA process leads to the formation of cell spheroids. The spheroids mimic the tumor microenvironment for drug screening.  相似文献   

6.
A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-β2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.  相似文献   

7.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

8.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

9.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

10.
Herein, new poly(ortho ester disulfide urethanes) (POEDU) and poly(ortho ester urethanes) (POEU) were successfully synthesized via polycondensation between active esters of 1,6-hexandiol (HD) and dual-stimuli-sensitive ortho ester disulfide diamine or pH-senstive ortho ester diamine. The corresponding POEDU and POEU nanospheres were easily fabricated using an oil-in-water emulsion technique. In vitro degradation experiments indicated that POEDU nanospheres degraded faster than POEU nanospheres in mildly acidic and reductive environments. Doxorubicin (DOX) as a model antitumor drug was successfully incorporated into these nanospheres to give DOX-loaded nanoparticles (POEDU-DOX and POEU-DOX). In vitro drug release studies showed that release of DOX from dual-stimuli-sensitive POEDU-DOX was accelerated compared with release from the pH-sensitive POEU-DOX under DL-dithiothreitol (DTT) and mildly acidic conditions. In addition, in vitro uptake and cytotoxicity assays revealed that POEDU-DOX exhibited more efficient antitumor effect than POEU-DOX did against both two-dimensional (2D) cells and three-dimensional (3D) multicellular tumor spheroids (MCTS). Finally, in a mice H22 tumor model, POEDU-DOX exhibited preferable antitumor capability. In conclusion, the pH and redox dual-stimuli-sensitive POEDU nanospheres can be superior drug carriers for cancer treatment.  相似文献   

11.
《Electrophoresis》2017,38(8):1206-1216
Cell‐on‐a‐chip systems have become promising devices to study the effectiveness of new anticancer drugs recently. Several microdevices for liver cancer culture and evaluation of the drug cytotoxicity have been reported. However, there are still no proven reports about high‐throughput and simple methods for the evaluation of drug cytotoxicity on liver cancer cells. The paper presents the results of the effects of the anticancer drug (5‐fluorouracil, 5‐FU) on the HepG2 spheroids as a model of liver cancer. The experiments were based on the long‐term 3D spheroid culture in the microfluidic system and monitoring of the effect of 5‐FU at two selected concentrations (0.5 mM and 1.0 mM). Our investigations have shown that the initial size of the spheroids has influence on the drug effect. With the increase of the spheroids diameter, the drug resistance (for the two tested 5‐FU concentrations) decreases. This phenomenon was observed both through cells metabolism analysis, as well as changes in spheroids sizes. In our research, we have shown that the lower 5‐FU (0.5 mM) concentration causes higher decrease in HepG2 spheroids viability. Moreover, due to the microsystem construction, we observe the drug resistance effect (10th day of culture) regardless of the initial size of the created spheroids and the drug concentration.  相似文献   

12.
In order to limit the side effects associated with antitumor drugs such as doxorubicin, nanosized drug‐delivery systems capable of selectively delivering and releasing the drug in the diseased tissue are required. We describe nanoparticles (NPs), self‐assembled from a reduction responsive amphiphilic peptide, capable of entrapping high amounts of a redox active anticancer drug candidate and releasing it in presence of a reducing agent. This system shows a high entrapment efficiency with up to 15 mg drug per gram of peptide (5.8 mol‐%). Treatment of the NPs with reducing agent results in the disassembly of the NPs and release of the drug molecules. A reduction in cell viability is observed at drug concentrations above 250 nm in HEK293T and HeLa cell lines. This drug delivery system has potential for targeting tumor sites via the EPR effect while taking advantage of the increased reduction potential in tumor microenvironment.  相似文献   

13.
3D structured cells have great drug screening potential because they mimic in vivo tissues better than 2D cultured cells. In this study, multi-block copolymers composed of poly(2-methoxyethyl acrylate) (PMEA) and polyethylene glycol (PEG) are developed as a new kind of biocompatible polymers. PEG imparts non-cell adhesion while PMEA acts as an anchoring segment to prepare the polymer coating surface. The multi-block copolymers show higher stability in water than PMEA. A specific micro-sized swelling structure composed of a PEG chain is observed in the multi-block copolymer film in water. A single NIH3T3-3-4 spheroid is formed in 3 h on the surface of the multi-block copolymers with 8.4 wt% PEG. However, at a PEG content of 0.7 wt%, spheroid formed after 4 days. The adenosine triphosphate (ATP) activity of cells and the internal necrotic state of the spheroid change depending on PEG loading in the multi-block copolymers. As the formation rate of cell spheroid on low-PEG-ratio multi-block copolymers is slow, internal necrosis of cell spheroid is less likely to occur. Consequently, the cell spheroid formation rate by changing the PEG chain content in multi-block copolymers is successfully controlled. These unique surfaces are suggested to be useful for 3D cell culture.  相似文献   

14.
Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The ...  相似文献   

15.
Thermophoresis of charged spheroids has been widely applied in biology and medical science. In this work, we report an analysis of the anisotropic thermophoresis of diluted spheroidal colloids in aqueous media for extremely thin EDL cases. Under the boundary layer approximation, we formulate the thermophoretic velocity, the thermophoretic force, and the thermodiffusion coefficient of a randomly dispersed spheroid. The parametric studies show that under the aforementioned conditions, the thermophoresis is anisotropic and its thermodiffusion coefficient should be considered as a vector, D T. The thermodiffusion coefficient values and directions of D T are strongly related to the aspect ratio and the angle θ between the externally applied temperature gradient and the particle's axis of revolution: The increasing aspect ratio enlarges the thermodiffusion coefficient value DT of prolate (oblate) spheroids to a constant value when θ < 60° (θ > 45°), and it reduces DT of prolate (oblate) spheroids to a constant value when θ > 60° (θ < 45°). The thermodiffusion coefficient direction of both prolate and oblate spheroids deviates slightly from −∇T for a small aspect ratio, and such deviation becomes serious for a large aspect ratio.  相似文献   

16.
Topography and microrelief of Ni-P coatings deposited by electroless plating from solutions with different composition are examined as a function of concentrations of nickel and acetate ions, solution pH, and stabilizing additives, namely, PbCl2 and thiourea. The coating growth involves the formation of surface spheroids of which a large percentage are strongly extended in the substrate plane and grow by the layered-growth mechanism. In terms of this mechanism, the changes in the topography and microrelief of coatings and also in the spheroid size as a function of the composition of electroless nickel plating solutions are explained. In solutions studied, the rates of formation of new two-dimensional layers and their propagation in the substrate plane are assessed. As the concentration of hydrated nickel ions in solution decreases, spheroids less extended in the substrate plane are formed and grow probably by the normal growth mechanism. The size distribution of spheroids is obtained and the reasons for the partial formation of spheroids with sizes deviating from those predicted by the normal law are analyzed.  相似文献   

17.
The influence of cell heterogeneity on response to photodynamic treatment (PDT) has been investigated using the human colon adenocarcinoma line WiDr, grown as spheroids and exposed to hematoporphyrin derivative. The spheroids show a marked spheroid size-dependent resistance to PDT. Using a flow cytometer, cell sub-populations have been separated, on the basis of drug fluorescence, from single cell suspensions prepared from 500 microm diameter spheroids. Cells low in fluorescence have been shown to be resistant to PDT, have a smaller median cell volume, and be enhanced in G1-type cells. These cells also show reduced low density lipoprotein uptake. The results suggest that spheroid size-dependent resistance to PDT is related to a decreasing growth fraction with increasing spheroid size. Heterogeneity of drug uptake could be a potential limitation to clinical PDT.  相似文献   

18.
We report the use of thin film poly(dimethylsiloxane) (PDMS) prints for the arrayed mass production of highly uniform 3-D human HT29 colon carcinoma spheroids. The spheroids have an organotypic density and, as determined by 3-axis imaging, were genuinely spherical. Critically, the array density impacts growth kinetics and can be tuned to produce spheroids ranging in diameter from 200 to 550 μm. The diffusive limit of competition for media occurred with a pitch of ≥1250 μm and was used for the optimal array-based culture of large, viable spheroids. During sustained culture mass transfer gradients surrounding and within the spheroids are established, and lead to growth cessation, altered expression patterns and the formation of a central secondary necrosis. These features reflect the microenvironment of avascularised tumours, making the array format well suited for the production of model tumours with defined sizes and thus defined spatio-temporal pathophysiological gradients. Experimental windows, before and after the onset of hypoxia, were identified and used with an enzyme activity-based viability assay to measure the chemosensitivity towards irinotecan. Compared to monolayer cultures, a marked reduction in the drug efficacy towards the different spheroid culture states was observed and attributed to cell cycle arrest, the 3-D character, scale and/or hypoxia factors. In summary, spheroid culture using the array format has great potential to support drug discovery and development, as well as tumour biology research.  相似文献   

19.
In this study, a novel drug‐carrying micelle composed of methoxy poly(ethylene glycol) (mPEG)‐b‐poly(L‐lactic acid) (PLLA) with gas‐forming carbonate linkage was fabricated. Here, the gas‐forming carbonate linkage was formed by the chemical coupling of the terminal hydroxyl group of the PLLA block and benzyl chloroformate (BC). mPEG‐b‐PLLA‐BC was self‐organized in aqueous solution: the PEG block on the hydrophilic outer shell and the PLLA‐BC block in the hydrophoboic innor core. The cleavage of carbonate linkage by hydrolysis and formation of carbon dioxide nanobubbles in the micellar core enabled an accelerated release of the encapsulated anticancer drug (doxorubicin: DOX) from the mPEG‐b‐PLLA‐BC micelles. The amount of drug (DOX) released from the mPEG‐b‐PLLA‐BC micelle was higher than that from the conventional mPEG‐b‐PLLA micelle, which allowed for increased in vitro toxicity against KB tumor cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Currently, there has been a growing need for developing in vitro models to better reflect organism response to chemotherapy at tissue level. For this reason, a microfluidic platform was developed for mimicking physiological microenvironment of solid tumor with multicellular tumor spheroids (MTS) for anticancer drug screening. Importantly, the power of this system over traditional systems is that it is simple to operate and high integration in a more physiologically relevant context. As a proof of concept, long-term MTS cultures with uniform structure were realized on the microfluidic based platform. The response of doxorubicin and paclitaxel on different types of spheroids were simultaneously performed by in situ Live/Dead fluorescence stain to provide spatial distribution of dead cells as well as cytotoxicity information. In addition, the established platform combined with microplate reader was capable to determine the cytotoxicity of different sized MTS, showing a more powerful tool than cell staining examination at the end-point of assay. The HCT116 spheroids were then lysed on chip followed by signaling transduction pathway analysis. To our knowledge, the on chip drug screening study is the first to address the drug susceptibility testing and the offline detailed drug signaling pathway analysis combination on one system. Thus, this novel microfluidic platform provides a useful tool for drug screening with tumor spheroids, which is crucial for drug discovery and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号