首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

2.
Poly(N‐ispropylacrylamide) [PNIPAM] is a widely studied polymer for use in biological applications due to its lower critical solution temperature (LCST) being so close to the human body temperature. Unfortunately, attempts to combine carbon nanotubes (CNTs) with PNIPAM have been unsuccessful due to poor interactions between these two materials. In this work, a PNIPAM copolymer with 1 mol‐% pyrene side group [p‐PNIPAM] was used to produce a thermoresponsive polymer capable of stabilizing both single and multi‐walled carbon nanotubes (MWNTs) in water. The presence of pyrene in the polymer chain lowers the LCST less than 4 °C and the interaction with nanotubes does not show any influence on LCST. Moreover, p‐PNIPAM stabilized nanotubes show a temperature‐dependent dispersion in water that allows the level of nanotube exfoliation/bundling to be controlled. Cryo‐TEM images, turbidity, and viscosity of these suspensions were used to characterize these thermoresponsive changes. This ability to manipulate the dispersion state of CNTs in water with p‐PNIPAM will likely benefit many biological applications, such as drug delivery, optical sensors, and hydrogels.

  相似文献   


3.
Thermoresponsive surfaces are prepared via a spin‐coating method with a block copolymer consisting of poly(N‐isopropylacrylamide) (PIPAAm) and poly(butyl methacrylate) (PBMA) on polystyrene surfaces. The PBMA block suppresses the removal of deposited PIPAAm‐based polymers from the surface. The polymer coating affects the temperature‐dependent cellular behavior of the surfaces with respect to protein adsorption. By adjusting layer thicknesses, PBMA‐b‐PIPAAm‐coated surfaces are optimized to regulate the adhesion/detachment of cells by temperature changes. Thus, thermoresponsive polymer‐coated surfaces are able to harvest contiguous cell sheets with their basal extracellular matrix proteins.

  相似文献   


4.
Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective “topological crosslinkers” for poly(N‐isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three‐dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two‐dimensional hexagonally ordered mesoporous silica.  相似文献   

5.
Summary: Robust thermosensitive PAH‐g‐PNIPAAm/PSS particles were prepared by addition of a poly(allylamine)‐graft‐poly(N‐isopropylacrylamide) particle suspension into poly(styrene sulfonate) solution above the LCST of PAH‐g‐PNIPAAm. Scanning force microscopy revealed stable and well‐separated particles in water at room temperature. The zeta‐potential showed a negative surface charge of the particles. Their thermosensitive behavior was demonstrated by dynamic light scattering. The release of rhodamine 6G loaded particles could respond to the incubation temperature.

Fabrication of thermosensitive and robust particle by suspension of in situ formed PAH‐g‐PNIPAAm particle above the LCST in PSS solution.  相似文献   


6.
Poly(N‐isopropylacrylamide) (PIPAAm), which is a well‐known temperature‐responsive polymer, is modified on substrates by various methods. At 37 °C, PIPAAm modified surface is hydrophobic and allows cells to adhere to and proliferate on the surface. By reducing temperature below the lower critical solution temperature of PIPAAm, the surface turns to hydrophilic and allows cells to detach themselves from the surface spontaneously. With this technology, cell sheet engineering is established several years ago. This review focuses on the preparations and characteristics of PIPAAm‐modified surfaces, and discusses the effect of surface properties on cell adhesion and deadhesion. In addition, the recent improvement of PIPAAm‐modified surfaces for cell culture and the clinical applications of cell sheets harvested from the surfaces are also mentioned. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 917–926  相似文献   

7.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


8.
Spherical single‐chain‐particles of poly(N‐isopropylacrylamide) were prepared in aqueous solution above the lower critical solution temperature upon the addition of sodium dodecyl sulfate. The size of the single‐chain‐particles was investigated by means of transmission electron microscopy and viscosity measurements of the corresponding solutions, indicating the absence of inter‐chain entanglements among the single‐chain‐particles.

Schematic of the preparation of PNIPAM single‐chain‐globules in solution.  相似文献   


9.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


10.
The synthesis of sequential full interpenetrating polymer networks (IPNs) based on poly (N‐isopropylacrylamide) (PNIPAAm) and negatively charged poly(N‐vinyl‐2‐pyrrolidone) (PNVP) was described and their swelling, drug release, and diffusion studies were investigated. PNIPAAm was used as a host network. According to swelling experiments, IPNs gave relatively lower swelling ratios compared to PNIPAAm hydrogel due to the higher cross‐linking density. Lidocaine (LD) was used as a model drug for the investigation of drug release behavior of IPNs. LD uptake of the IPNs were found to increase from 24 to 166 (mg LD / g dry gel) with increasing amount of PNIPAAm and AMPS contents in the IPN structure. It was observed that the specific interaction between drug and AMPS co‐monomer influenced the drug release profile. In the diffusion transport mechanism study in water, the results indicated that the swelling exponents n for all IPNs are in the range from 0.50 to 0.72. This implies that the swelling transport mechanism was transferred from Fickian to non‐Fickian transport, with increasing AMPS content and NIPAAm character in the IPN structure. In addition, diffusion of LD within the IPNs showed similar trend. The incorporation of AMPS leads to an increase in electrostatic interaction between charge sites on carboxylate ions and cationic LD molecules. Therefore, the highest diffusion coefficient (D) of drug was found for IPN2 sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

12.
13.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


14.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

15.
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The extraordinary mechanical and swelling/deswelling properties of nanocomposite (NC) gels are attributed to their unique organic (polymer)/inorganic (clay) network structure. In this study, poly(N‐isopropylacrylamide) (PNIPA) was successfully separated from an NC gel network by decomposing the clay (hectorite) using hydrofluoric acid (HF). A very low HF concentration (0.2 wt.‐%) was adequate for the decomposition of the clay without causing any damage to PNIPA. The separated PNIPA had a high (=5.5 × 106 g · mol−1). Also, was almost constant regardless of the clay concentration (Cclay = 1–25 × 10−2 mol · l−1), even though the properties of the NC gel varied widely over this Cclay range. Comparisons of NC gels, PNIPA, and SiO2‐NC gels indicated that the clay platelets specifically play an important role in NC gels.

  相似文献   


17.
A new type of glucose‐responsive hydrogel with rapid response to blood glucose concentration change at physiological temperature has been successfully developed. The polymeric hydrogel contains phenylboronic acid (PBA) groups as glucose sensors and thermo‐responsive poly (N‐isopropylacrylamide) (PNIPAM) groups as actuators. The response rate of the hydrogel to environmental glucose concentration change was significantly enhanced by introducing grafted poly(N‐isopropylacrylamide‐co‐3‐acrylamidophenylboronic acid) [poly(NIPAM‐co‐AAPBA)] side chains onto crosslinked poly(NIPAM‐co‐AAPBA) networks for the first time. The synthesized comb‐type grafted poly(NIPAM‐co‐AAPBA) hydrogels showed satisfactory equilibrium glucose‐responsive properties, and exhibited much faster response rate to glucose concentration change than normal type crosslinked poly(NIPAM‐co‐AAPBA) hydrogels at physiological temperature. Such glucose‐responsive hydrogels with rapid response rate are highly attractive in the fields of developing glucose‐responsive sensors and self‐regulated drug delivery systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The addition of mixture of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and polystyrene homopolymer (h‐PS) in tetrahydrofuran dropwise into water leads to nanoparticles with a PS core and a thermally sensitive PNIPAM shell. The effects of the ratio of the homopolymer to copolymer and temperature on the formation and stabilization of the dispersion were investigated by using a combination of static and dynamic laser light scattering. PNIPAM shell continuously collapses as temperature increases in the range 20–40 °C. Such formed particles are stable even at temperatures much higher than lower critical solution temperature (LCST ~ 32 °C) of PNIPAM. Our results reveal that the area occupied per hydrophilic PNIPAM chain on the hydrophobic PS core remains nearly a constant regardless of the amount of h‐PS in the polymer mixture. This clearly indicates that the surface area occupied per hydrophilic group is a critical parameter for stabilizing particles dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 749–755, 2010  相似文献   

20.
The temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels, prepared by γ and electron‐beam (EB) irradiation, were studied using positron annihilation lifetime spectroscopy (PALS). The effect of water content in the hydrogel on the ortho‐positronium (o‐Ps) lifetime and intensity was investigated. The observed positronium lifetime suggests microstructural differences between γ‐ and EB‐synthesized hydrogels. The distribution in positronium lifetime indicates nonhomogeneity in the distribution of free‐volume holes in EB‐synthesized hydrogels. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3462–3466, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号