首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines are ubiquitous polycationic molecules that play a key role in many biological processes such as nucleic acid metabolism, protein synthesis, cell growth, and nicotine synthesis precursors. This work describes a rapid, sensitive, convenient, green, and cost‐effective method for the determination of polyamines in Nicotiana tabacum by ultra high performance liquid chromatography with photodiode array detection. The analytes were derivatized with 3,5‐dinitrobenzoyl chloride at low temperature (about 4°C) and then extracted with vortex‐assisted liquid–liquid microextraction. The experimental designs based on quarter‐fractional factorial design and Doehlert design were used to screen and optimize the important factors in microextraction process. Under the optimal conditions, the method was linear over 0.05–8.00 μg/mL with an r2 ≥ 0.992 and exhibited good repeatability and reproducibility less than 6.0 and 6.9%, respectively. The limit of detection ranged between 0.013 and 0.029 μg/g. The newly developed method was successfully employed to analyze different leaf samples of Nicotiana tabacum, among which the polyamines contents were found to be very different. Moreover, tyramine, 1,3‐diaminopropane, homospermidine, and canavalmine were tentatively identified with the electrospray ionization quadrupole time‐of‐flight mass spectrometry. To our knowledge, this is the first report of identification of canavalmine in Nicotiana Tabacum.  相似文献   

2.
In this work, two disperser‐free microextraction methods, namely, air‐agitated liquid–liquid microextraction and ultrasound‐assisted emulsification microextraction are compared for the determination of a number of polycyclic aromatic hydrocarbons in aqueous samples, followed by gas chromatography with flame ionization detection. The effects of various experimental parameters upon the extraction efficiencies of both methods are investigated. Under the optimal conditions, the enrichment factors and limits of detection were found to be in the ranges of 327–773 and 0.015–0.05 ng/mL for air‐agitated liquid–liquid microextraction and 406–670 and 0.015–0.05 ng/mL for ultrasound‐assisted emulsification microextraction, respectively. The linear dynamic ranges and extraction recoveries were obtained to be in the range of 0.05–120 ng/mL (R2 ≥ 0.995) and 33–77% for air‐agitated liquid–liquid microextraction and 0.05–110 ng/mL (R2 ≥ 0.994) and 41–67% for ultrasound‐assisted emulsification microextraction, respectively. To investigate this common view among some people that smoking hookah is healthy due to the passage of smoke through the hookah water, samples of both the hookah water and hookah smoke were analyzed.  相似文献   

3.
In this study, for the first time, salt‐assisted liquid–liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1–30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt‐assisted liquid–liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt‐assisted liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples.  相似文献   

4.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

5.
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them.  相似文献   

6.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

7.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

8.
In this work, a hyphenated technique of dual ultrasound‐assisted dispersive liquid–liquid microextraction combined with microwave‐assisted derivatization followed by ultra high performance liquid chromatography tandem mass spectrometry has been developed for the determination of phytosterols in functional foods and medicinal herbs. Multiple reaction monitoring mode was used for the tandem mass spectrometry detection. A mass spectrometry sensitive reagent, 4′‐carboxy‐substituted rosamine, has been used as the derivatization reagent for five phytosterols, and internal standard diosgenin was used for the first time. Parameters for the dual microextraction, microwave‐assisted derivatization, and ultra high performance liquid chromatography tandem mass spectrometry were all optimized in detail. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect, extremely low limits of detection (0.005–0.015 ng/mL) and limits of quantification (0.030–0.10 ng/mL) were achieved. The proposed method was compared with previously reported methods. It showed better sensitivity, selectivity, and accuracy. The matrix effect was also significantly reduced. The proposed method was successfully applied to the determination of five phytosterols in vegetable oil (sunflower oil, olive oil, corn oil, peanut oil), milk and orange juice (soymilk, peanut milk, orange juice), and medicinal herbs (Ginseng, Ganoderma lucidum, Cordyceps, Polygonum multiflorum) for the quality control of functional foods and medicinal herbs.  相似文献   

9.
Vortex‐assisted dispersive liquid–liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high‐performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5–39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01–0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4–110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples.  相似文献   

10.
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals.  相似文献   

11.
A simple, rapid, and efficient method, vortex‐assisted extraction followed by dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples prior to analysis by high performance liquid chromatography fluorescence detection. Acetonitrile was used as collecting solvent for the extraction of PAHs from sediment by vortex‐assisted extraction. In DLLME, PAHs were rapidly transferred from acetonitrile to dichloromethane. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 10 to 2100 ng g?1 for fluorene, anthracene, chrysene, benzo[k]fluoranthene, and benzo[a]pyrene, and 20 to 2100 ng g?1 for other target analytes. Coefficients of determinations ranged from 0.9986 to 0.9994. The limits of detection, based on signal‐to‐noise ratio of three, ranged from 2.3 to 6.8 ng g?1. Reproducibility and recoveries was assessed by extracting a series of six independent sediment samples, which were spiked with different concentration levels. Finally, the proposed method was successfully applied in analyses of real nature sediment samples. The proposed method extended and improved the application of DLLME to solid samples, which greatly shorten the extraction time and simplified the extraction process.  相似文献   

12.
The constant emergence of new psychoactive substances is a challenge to clinical and forensic toxicologists who need to constantly update analytical techniques to detect them. A large portion of these substances are synthetic cannabinoids. The aim of this study was to develop a rapid and simple method for the determination of synthetic cannabinoids and their metabolites in urine and blood using gas chromatography–mass spectrometry. The method involves an ultrasound‐assisted dispersive liquid–liquid microextraction that implies a rapid procedure, giving excellent extraction efficiencies with minimal use of toxic solvents. This is followed by silylation and analysis with gas chromatography–mass spectrometry. The chromatographic method allows for the separation and identification of 29 selected synthetic cannabinoids and some metabolites. The method was validated on urine and blood samples with the ability to detect and quantify all analytes with satisfactory limits of detection (from 1 to 5 ng/mL), limits of quantification (5 ng/mL), and selectivity and linearity (in the range of 5–200 ng/mL). The developed assay is highly applicable to laboratories with limited instrumental availability, due to the use of efficient and low‐cost sample preparation and instrumental equipment. The latter may contribute to enhance the detection of new psychoactive substances in clinical and forensic toxicology laboratories.  相似文献   

13.
Simultaneous derivatization and air‐assisted liquid–liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p‐xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90–2.7 and 3.0–6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370–430 and 489–660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4–6% (= 6) and 4–9% (= 4) for intra‐ and interday precisions, respectively. The proposed method was successfully used for the determination of methyl‐, ethyl‐, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.  相似文献   

14.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

15.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

16.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

17.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   

18.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

19.
A method combining accelerated solvent extraction with dispersive liquid–liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m‐cresol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid–liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid–liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1–3080 ng/g), low limits of detection (0.06–1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9–110%. These findings indicate that accelerated solvent extraction with dispersive liquid–liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples.  相似文献   

20.
Task‐specific ionic liquid‐based ultrasound‐assisted dispersive liquid–liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task‐specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT‐TL‐1, INCT‐MPH‐2) with the recovery values in the range of 90–104%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号