首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The key to bringing the electrocatalytic nitrogen fixation from conception to application lies in the development of high-efficiency, cost-effective electrocatalysts. Layered double hydroxides (LDHs), also known as hydrotalcites, are promising electrocatalysts for water splitting due to multiple metal centers and large surface areas. However, their activities in the electrocatalytic nitrogen fixation are unsatisfactory. Now, a simple and effective way of phosphorus doping is presented to regulate the charge distribution in LDHs, thus promoting the nitrogen adsorption and activation. The P-doped LDHs are further coupled to a self-supported, conductive matrix, that is, a carbon nanofibrous membrane, which prevents their aggregation as well as ensuring rapid charge transfer at the interface. By this strategy, decent ammonia yield (1.72×10−10 mol s−1 cm−2) and Faradaic efficiency (23 %) are delivered at −0.5 V vs. RHE in 0.1 m Na2SO4.  相似文献   

2.
The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco‐friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 μg h?1 mg?1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate‐limiting *N2H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.  相似文献   

3.
Developing noble‐metal‐free electrocatalysts is important to industrially viable ammonia synthesis through the nitrogen reduction reaction (NRR). However, the present transition‐metal electrocatalysts still suffer from low activity and Faradaic efficiency due to poor interfacial reaction kinetics. Herein, an interface‐engineered heterojunction, composed of CoS nanosheets anchored on a TiO2 nanofibrous membrane, is developed. The TiO2 nanofibrous membrane can uniformly confine the CoS nanosheets against agglomeration, and contribute substantially to the NRR performance. The intimate coupling between CoS and TiO2 enables easy charge transfer, resulting in fast reaction kinetics at the heterointerface. The conductivity and structural integrity of the heterojunction are further enhanced by carbon nanoplating. The resulting C@CoS@TiO2 electrocatalyst achieves a high ammonia yield (8.09×10?10 mol s?1 cm?2) and Faradaic efficiency (28.6 %), as well as long‐term durability.  相似文献   

4.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body‐centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h?1 mg?1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at ?0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face‐centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

5.
Titanium‐based catalysts are needed to achieve electrocatalytic N2 reduction to NH3 with a large NH3 yield and a high Faradaic efficiency (FE). One of the cheapest and most abundant metals on earth, iron, is an effective dopant for greatly improving the nitrogen reduction reaction (NRR) performance of TiO2 nanoparticles in ambient N2‐to‐NH3 conversion. In 0.5 m LiClO4, Fe‐doped TiO2 catalyst attains a high FE of 25.6 % and a large NH3 yield of 25.47 μg h?1 mgcat?1 at ?0.40 V versus a reversible hydrogen electrode. This performance compares favorably to those of all previously reported titanium‐ and iron‐based NRR electrocatalysts in aqueous media. The catalytic mechanism is further probed with theoretical calculations.  相似文献   

6.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

7.
NH3 synthesis by the electrocatalytic N2 reduction reaction (NRR) under ambient conditions is an appealing alternative to the currently employed industrial method—the Haber–Bosch process—that requires high temperature and pressure. We report single Mo atoms anchored to nitrogen‐doped porous carbon as a cost‐effective catalyst for the NRR. Benefiting from the optimally high density of active sites and hierarchically porous carbon frameworks, this catalyst achieves a high NH3 yield rate (34.0±3.6 μg h?1 mgcat.?1) and a high Faradaic efficiency (14.6±1.6 %) in 0.1 m KOH at room temperature. These values are considerably higher compared to previously reported non‐precious‐metal electrocatalysts. Moreover, this catalyst displays no obvious current drop during a 50 000 s NRR, and high activity and durability are achieved in 0.1 m HCl. The findings provide a promising lead for the design of efficient and robust single‐atom non‐precious‐metal catalysts for the electrocatalytic NRR.  相似文献   

8.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3. However, electrocatalytic NRR mainly relies on metal‐based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal‐free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 μg h?1 mg?1cat., Faradaic efficiency: 11.59 %) on metal‐free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as‐engineered nitrogen vacancies of PCN through constructing a dinuclear end‐on bound structure for spatial electron transfer. Furthermore, the N?N bond length of adsorbed N2 increases dramatically, which corresponds to “strong activation” system to reduce N2 into NH3. This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.  相似文献   

9.
N2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH3 production, which still heavily relies on the Haber–Bosch process at the cost of huge energy and massive production of CO2. A noble‐metal‐free Bi4V2O11/CeO2 hybrid with an amorphous phase (BVC‐A) is used as the cathode for electrocatalytic NRR. The amorphous Bi4V2O11 contains significant defects, which play a role as active sites. The CeO2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi4V2O11 for rapid interfacial charge transfer. Remarkably, BVC‐A shows outstanding electrocatalytic NRR performance with high average yield (NH3: 23.21 μg h?1 mg?1cat., Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi4V2O11/CeO2 hybrid with crystalline phase (BVC‐C) counterpart.  相似文献   

10.
Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h?1 mgcat.?1 (5350 μg h?1 mgFe?1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h?1 mgcat.?1 (51 283 μg h?1 mgFe?1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

11.
Powered by renewable electricity, the electrochemical reduction of nitrogen to ammonia is proposed as a promising alternative to the energy‐ and capital‐intensive Haber–Bosch process, and has thus attracted much attention from the scientific community. However, this process suffers from low NH3 yields and Faradaic efficiency. The development of more effective electrocatalysts is of vital importance for the practical applications of this reaction. Of the reported catalysts, single‐atom catalysts (SACs) show the significant advantages of efficient atom utilization and unsaturated coordination configurations, which offer great scope for optimizing their catalytic performance. Herein, progress in state‐of‐the‐art SACs applied in the electrocatalytic N2 reduction reaction (NRR) is discussed, and the main advantages and challenges for developing more efficient electrocatalysts are also highlighted.  相似文献   

12.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

13.
《Journal of Energy Chemistry》2017,26(6):1094-1106
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.  相似文献   

14.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

15.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new‐type Fe‐SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h?1 mgcat.?1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3? yields of 42.9 μg h?1 mgcat.?1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy‐anchored single‐atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

16.
The low-cost, high-abundance and durable layered double hydroxides (LDHs) have been considered as promising electrocatalysts for oxygen evolution reaction (OER). However, the easy agglomeration of lamellar LDHs in the aqueous phase limits their practical applications. Herein, a series of ternary NiCoFe LDHs were successfully fabricated on nickel foam (NF) via a simple electrodeposition method. The as-prepared Ni(Co0.5Fe0.5)/NF displayed an unique nanoarray structural feature. It showed an OER overpotential of 209 mV at a current density of 10 mA cm−2 in alkaline solution, which was superior to most systems reported so far. As evidenced by the XPS and XAFS results, such excellent performance of Ni(Co0.5Fe0.5)/NF was attributed to the higher Co3+/Co2+ ratio and more defects exposed, comparing with Ni(Co0.5Fe0.5)-bulk and Ni(Co0.5Fe0.5)-mono LDHs prepared by conventional coprecipitation method. Furthermore, the ratio of Co to Fe could significantly tune the Co electronic structure of Ni(CoxFe1-x)/NF composites (x=0.25, 0.50 and 0.75) and affect the electrocatalytic activity for OER, in which Ni(Co0.5Fe0.5)/NF showed the lowest energy barrier for OER rate-determining step (from O* to OOH*). This work proposes a facile method to develop high-efficiency OER electrocatalysts.  相似文献   

17.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

18.
Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe‐LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe‐O‐Fe moieties. These Fe2+‐containing NiFe‐LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm?2, which is among the best OER catalytic performance to date. In‐situ X‐ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe‐O‐Fe motifs could stabilize high‐valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.  相似文献   

19.
NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+, resulting in electron-deficient properties of the Ni sites, which would function as “electron-hungry” sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li−NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm−2, which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2. Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.  相似文献   

20.
A novel carbon paste electrode modified with carbon nanotubes and 5‐amino‐2′‐ethyl‐biphenyl‐2‐ol (5AEB) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of levodopa (LD) and carbidopa (CD), is described. Cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. The apparent charge transfer rate constant, ks, and transfer coefficient, a, for electron transfer between 5AEB and CPE were calculated as 17.3 s?1 and 0.5, respectively. Square wave voltammetry (SWV) exhibits a linear dynamic range from 2.5×10?7 to 2.0×10?4 M and a detection limit of 9.0×10?8 M for LD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号