首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a conjugated polymer-based single-particle heterojunction, stochastic fluctuations of the photogenerated hole population lead to spontaneous fluorescence switching. We found that 405 nm irradiation can induce charge recombination and activate the single-particle emission. Based on these phenomena, we developed a novel class of semiconducting polymer dots that can operate in two superresolution imaging modes. The spontaneous switching mode offers efficient imaging of large areas, with <10 nm localization precision, while the photoactivation/deactivation mode offers slower imaging, with further improved localization precision (ca. 1 nm), showing advantages in resolving small structures that require high spatial resolution. Superresolution imaging of microtubules and clathrin-coated pits was demonstrated, under both modes. The excellent localization precision and versatile imaging options provided by these nanoparticles offer clear advantages for imaging of various biological systems.  相似文献   

2.
During the last decade far‐field fluorescence microscopy methods have evolved that have resolution far below the wavelength of light. To outperform the limiting role of diffraction, all these methods, in one way or another, switch the ability of a molecule to emit fluorescence. Here we present a novel rhodamine amide that can be photoswitched from a nonfluorescent to a fluorescent state by absorption of one or two photons from a continuous‐wave laser beam. This bright marker enables strict control of on/off switching and provides single‐molecule localization precision down to 15 nm in the focal plane. Two‐photon induced nonlinear photoswitching of this marker with continuous‐wave illumination offers optical sectioning with simple laser equipment. Future synthesis of similar compounds holds great promise for cost‐effective fluorescence nanoscopy with noninvasive optical sectioning.  相似文献   

3.
The structure and dynamics of crosslinked nanoparticles (microgels) made out of hydroxypropylcellulose (HPC) polymer chains were studied using dynamic light scattering spectroscopy. The microgel light scattering spectra were found to be highly nonexponential requiring a spectral time moment analysis in which the spectra were fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single spectral mode. At room temperature microgel spectra reveal three modes. Two faster modes are almost diffusive and correspond to apparent sizes of 25 and 450–650 nm. The slowest mode is independent of scattering angle and is reminiscent of the slow polymer mode observed in identical non‐crosslinked polymer solutions. When solution temperature is varied from 23 to 45°C and back, the microgel undergoes a reversible volume phase transition between 40 and 45°C. According to the time‐moment analysis, above the transition temperature two faster modes collapse into one with apparent hydrodynamic radius of 100–150 nm, while the slow mode remains largely unchanged. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 771–781, 2008  相似文献   

4.
The precision of single‐molecule localization‐based super‐resolution microscopy, including dSTORM, critically depends on the number of detected photons per localization. Recently, reductive caging of fluorescent dyes followed by UV‐induced recovery in oxidative buffer systems was used to increase the photon yield and thereby the localization precision in single‐color dSTORM. By screening 39 dyes for their fluorescence caging and recovery kinetics, we identify novel dyes that are suitable for multicolor caged dSTORM. Using a dye pair suited for registration error‐free multicolor dSTORM based on spectral demixing (SD), a multicolor localization precision below 15 nm was achieved. Caged SD‐dSTORM can resolve the ultrastructure of single 40 nm synaptic vesicles in brain sections similar to images obtained by immuno‐electron microscopy, yet with much improved label density in two independent channels.  相似文献   

5.
The spatial resolution of single-molecule localization microscopy is limited by the photon number of a single switching event because of the difficulty of correlating switching events dispersed in time. Here we overcome this limitation by developing a new class of photoswitching semiconducting polymer dots (Pdots) with structured and highly dispersed single-particle spectra. We imaged the Pdots at the first and the second vibronic emission peaks and used the ratio of peak intensities as a spectral coding. By correlating switching events using the spectral coding and performing 4–9 frame binning, we achieved a 2–3 fold experimental resolution improvement versus conventional superresolution imaging. We applied this method to count and map SV2 and proton ATPase proteins on synaptic vesicles (SVs). The results reveal that these proteins are trafficked and organized with high precision, showing unprecedented level of detail about the composition and structure of SVs.  相似文献   

6.
Photon‐mediated switching of polymer solubility plays a crucial role in the manufacture of integrated circuits by photolithography. Conventional photoresists typically rely on a single switching mechanism based on either a change in polarity or, molecular weight of the polymer. Here we report a photoresist platform that uses both mechanisms. The molecular weight switch was achieved by using a poly(olefin sulfone) designed to undergo photo‐induced chain scission. The polarity switch was achieved using pendant groups functionalized with o‐nitrobenzyl esters. These are hydrophobic photosensitive‐protecting groups for hydrophilic carboxylic acids. On irradiation, they are cleaved, making the polymer soluble in aqueous base. Importantly, the resists do not contain photoacid generator, so do not suffer from problems associated with acid diffusion that are detrimental to pattern fidelity. The 193 nm photochemistry of polymer thin films was followed using grazing angle attenuated total reflectance Fourier transform infrared spectroscopy, variable angle spectroscopic ellipsometry, and measurements of solubility in aqueous base. The nanoscale patterning performance of the polymers was also assessed using 193 nm interference lithography and electron‐beam lithography. The implications of using dual switching mechanisms are discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single‐molecule limit in 1989 using frequency‐modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super‐resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super‐resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.  相似文献   

8.
金属纳米颗粒由于其局域表面等离子共振(LSPR),能显示出独特的光吸收和散射特性,常被应用于物理、化学和生物领域的分析检测。这类探针具有高强度、高稳定性,以及可以长时间成像观察等优势。对于单个金属纳米颗粒的LSPR光谱研究通常采用暗场显微镜(DFM)与光谱仪来观察。但是,现有的暗场显微镜-光谱仪联用装置受限于自带照明光源的强度与光谱范围等原因,造成对散射信号较弱的样品光谱采集时间长、采集范围窄,例如,无法做到对粒径在30 nm以下的小颗粒纳米金进行实时观察。本文针对这一问题使用超连续激光器作为光源,使对单个金属纳米颗粒的光谱采集时间可以缩短至1 ms。此外,针对细胞功能成像的需求,增加了光片成像模式,通过切换滤块,能够实现荧光成像与暗场成像的共定位。  相似文献   

9.
The design, synthesis, and evaluation of new rhodamine spiroamides are described. These molecules have applications in optical nanoscopy based on random switching of the fluorescent single molecules. The new markers may be used in (co)localization studies of various objects and their (mutual) positions and shape can be determined with a precision of a few tens of nanometers. Multicolor staining, good photoactivation, a large number of emitted photons, and selective chemical binding with amino or thiol groups were achieved due to the presence of various functional groups on the rhodamine spiroamides. Rigidized sulfonated xanthene fragment fused with six‐membered rings, N,N′‐bis(2,2,2‐trifluoroethyl) groups, and a combination of additional double bonds and sulfonic acid groups with simple aliphatic spiroamide residue provide multicolor properties and improve performance of the rhodamine spiroamides in photoactivation and bioconjugation reactions. Having both essential parts of the photoswitchable assembly—the switching and the fluorescent (reporter) groups—combined in one chemical entity make this approach attractive for further development. A series of rhodamine spiroamides is presented along with characterizations of their most relevant properties for application as fluorescent probes in single‐molecule switching and localization microscopy. Optical images with resolutions on the nanometer scale illustrate the potential of the labels in the colocalization of biological objects and the two‐photon activation technique with optical sectioning.  相似文献   

10.
Dye‐loaded polymer nanoparticles (NPs) emerge as a powerful tool for bioimaging applications, owing to their exceptional brightness and controlled small size. However, aggregation‐caused quenching (ACQ) and leakage of dyes at high loading remain important challenges of these nanomaterials. The use of bulky hydrophobic counterions has been recently proposed as an effective approach to minimize ACQ and dye leakage, but the role of counterion structure is still poorly understood. Here, a systematic study based on ten counterions, ranging from small hydrophilic perchlorate up to large hydrophobic tetraphenylborate derivatives, reveals how counterion nature can control encapsulation and emission of a cationic dye (rhodamine B octadecyl ester) in NPs prepared by nanoprecipitation of a biodegradable polymer, poly‐lactide‐co‐glycolide (PLGA). We found that increase in counterion hydrophobicity enhances dye encapsulation efficiency and prevents dye adsorption at the particle surface. Cellular imaging studies revealed that ≥95 % encapsulation efficiency, achieved with most hydrophobic counterions (fluorinated tetraphenylborates), is absolutely required because non‐encapsulated dye species at the surface of NPs are the origin of dye leakage and strong fluorescence background in cells. The size of counterions is found to be essential to prevent ACQ, where the largest species, serving as effective spacer between dyes, provide the highest fluorescence quantum yield. Moreover, we found that the most hydrophobic counterions favor dye–dye coupling inside NPs, leading to ON/OFF fluorescence switching of single particles. By contrast, less hydrophobic counterions tend to disperse dyes in the polymer matrix favoring stable emission of NPs. The obtained structure‐property relationships validate the counterion‐based approach as a mature concept to fight ACQ and dye leakage in the development of advanced polymeric nanomaterials with controlled optical properties.  相似文献   

11.
Polymer lipid nanodiscs are an invaluable system for structural and functional studies of membrane proteins in their near‐native environment. Despite the recent advances in the development and usage of polymer lipid nanodisc systems, lack of control over size and poor tolerance to pH and divalent metal ions are major limitations for further applications. A facile modification of a low‐molecular‐weight styrene maleic acid copolymer is demonstrated to form monodispersed lipid bilayer nanodiscs that show ultra‐stability towards divalent metal ion concentration over a pH range of 2.5 to 10. The macro‐nanodiscs (>20 nm diameter) show magnetic alignment properties that can be exploited for high‐resolution structural studies of membrane proteins and amyloid proteins using solid‐state NMR techniques. The new polymer, SMA‐QA, nanodisc is a robust membrane mimetic tool that offers significant advantages over currently reported nanodisc systems.  相似文献   

12.
Single‐particle electrochemistry at a nanoelectrode is explored by dark‐field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub‐micrometer particles are directly sized optically by super‐localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto‐electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single‐particle electrochemistry.  相似文献   

13.
Miniaturized lasers with high spectral purity and wide wavelength tunability are crucial for various photonic applications. Here we propose a strategy to realize broadband‐tunable single‐mode lasing based on a photoisomerization‐activated intramolecular charge‐transfer (ICT) process in coupled polymer microdisk cavities. The photoisomerizable molecules doped in the polymer microdisks can be quantitatively transformed into a kind of laser dye with strong ICT character by photoexcitation. The gain region was tailored over a wide range through the self‐modulation of the optically activated ICT isomers. Meanwhile, the resonant modes shifted with the photoisomerization because of a change in the effective refractive index of the polymer microdisk cavity. Based on the synergetic modulation of the optical gain and microcavity, we realized the broadband tuning of the single‐mode laser. These results offer a promising route to fabricate broadband‐tunable microlasers towards practical photonic integrations.  相似文献   

14.
Medium‐ and high‐resolution SEM analysis of several Ti‐based MgCl2‐supported Ziegler–Natta catalysts and isotactic polypropylene produced with them is carried out. Each catalyst particle, 35–55 μ in size, produces one polymer particle with an average size of 1.5–2 mm, which replicates the shape of the catalyst particle. Polymer particles contain two distinct morphological features. The larger of them are globules with Dav ~400 nm; from 1 to 2 × 1011 globules per particle. Each globule represents the combined polymer output of a single active center. The globules consist of ~2500 microglobules with an average size of ~20 nm. The microglobules contain several folded polymer molecules; they are the smallest thermodynamically stable macromolecular ensembles in propylene polymerization reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3832–3841  相似文献   

15.
We investigated exciton migration, trapping and emission processes occurring within a single conjugated polymer molecule by means of superresolution fluorescence localization microscopy. This methodology allowed us to locate the spatial distribution of emitting sites within single chains with nanometre precision. The study was done on individual poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) molecules with average molecular weights ranging from 215,000 to 1,440,000 and with narrow weight distributions. We found that the mean emission intensity increases proportionally to the polymer molecular weight. The localization experiments suggest that the emitting sites are distributed nearly uniformly within a single chain and that the sites are on average 10 nm apart, irrespective of the molecular weight of the polymer. Furthermore, spatial contours formed by all the combined emitting sites within one chain show elongated shapes, in agreement with a rod-like structure of MEH-PPV in a collapsed state.  相似文献   

16.
在生物医学领域,对纳米尺寸级别的微小生物目标进行精确定位研究具有非常重要的意义,而光学显微成像技术为此提供了强有力的工具。 光学显微成像技术受到光学衍射极限的限制,难以分辨尺寸在衍射极限(<200 nm)以下的生物结构,无法直接获取微小生物结构信息,阻碍了生物医学的进一步发展。 近年来,随着纳米分辨显微成像技术的出现,新型荧光探针的开发、成像系统与设备的不断发展及成像算法不断完善地深入结合,促进了光学衍射极限以下尺寸微观目标的研究。 基于单分子定位的超分辨荧光显微成像(SMLM)包括光激活定位成像(PALM)与随机光学重构超分辨成像(STORM),将有机荧光探针与超分辨光学显微成像技术紧密结合在一起,荧光探针的光物理性质直接决定着超分辨成像结果的好坏。 因此,设计不同性能的荧光探针可以实现超精细结构的不同超分辨成像,为研究其生物学功能提供了有力的工具。 本文着重围绕基于SMLM的原理、有机荧光探针的设计要求、用于SMLM的荧光探针种类及其生物应用等方面进行总结综述,指出了单分子定位成像上存在的不足,并对其发展方向进行了展望,希望为对超分辨成像研究感兴趣或初涉该领域的研究者提供成像理论与探针设计方面的帮助。  相似文献   

17.
The microemulsion polymerization of methyl methacrylate was studied. The effects of feeding modes on the structure and the properties of the obtained polymer microlatex were investigated by measuring the conversion, the transmittance and the refractive index of the latex, and by measuring the particle size, the molecular weight and the glass transition temperature (Tg) of the polymers. The results show that compared to the batch feeding mode, the semi-continuous feeding mode is more favorable to form a PMMA microlatex with a higher transmittance, a smaller particle size, a higher molecular weight and a higher Tg. And the obtained PMMA microlatex has a 30 %-40 % (mass fraction) polymer content, a 0.03 emulsifier/water weight ratio, a 0.05emulsifier/monomer weight ratio and a 17 nm average particle diameter, which is very important for the industrialization of the microemulsion polymerization technique.  相似文献   

18.
π‐Conjugated segments, chromophores, are the electronically active units of polymer materials used in organic electronics. To elucidate the effect of the bending of these linear moieties on elementary electronic properties, such as luminescence color and radiative rate, we introduce a series of molecular polygons. The π‐system in these molecules becomes so distorted in bichromophores (digons) that these absorb and emit light of arbitrary polarization: any part of the chain absorbs and emits radiation with equal probability. Bending leads to a cancellation of transition dipole moment (TDM), increasing excited‐state lifetime. Simultaneously, fluorescence shifts to the red as radiative transitions require mixing of the excited state with vibrational modes. However, strain can become so large that excited‐state localization on shorter units of the chain occurs, compensating TDM cancellation. The underlying correlations between shape and photophysics can only be resolved in single molecules.  相似文献   

19.
How does the chemical reaction of a single polymer chain progress? This question is not proven, as long as it is studied the data of the ensemble average from the large number of molecules. In this study, we succeeded for the first time in the direct measurement of when, where, and how the chemical reaction of a polymer chain proceeds on a nanometer scale. That is, single‐molecule imaging of the photodegradation reaction of a chiral helical π‐conjugated polymer following laser irradiation of 405 nm was conducted. Analysis of the chemical kinetics showed that the photodegradation of the single polymer chain proceeded stepwise as a quantum phenomenon. When the motility of the chain‐end increased, reactivity of the photodegradation increased. It was also discovered that the photodegradation of the polymer chain proceeded continuously in one direction, like the “domino effect.” Our method allowed dynamic imaging of single polymer chains at a solid/liquid interface, and hence can be applied to the study of many types of polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4103–4107, 2010  相似文献   

20.
In DNA points accumulation in nanoscale topography (DNA‐PAINT), capable of single‐molecule localization microscopy with sub‐10‐nm resolution, the high background stemming from the unbound fluorescent probes in solution limits the imaging speed and throughput. Herein, we reductively cage the fluorescent DNA probes conjugated with a cyanine dye to hydrocyanine, acting as a photoactivatable dark state. The additional dark state from caging lowered the fluorescent background while enabling optically selective activation by total internal reflection (TIR) illumination at 405 nm. These benefits from “reductive caging” helped to increase the localization density or the imaging speed while preserving the image quality. With the aid of high‐density analysis, we could further increase the imaging speed of conventional DNA‐PAINT by two orders of magnitude, making DNA‐PAINT capable of high‐throughput super‐resolution imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号