首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO2 conversion remains an unsolved challenge. Among a series of ternary Sn-Ti-O electrocatalysts, 3D ordered mesoporous (3DOM) Sn0.3Ti0.7O2 achieves a trade-off between active-site exposure and structural stability, demonstrating up to 71.5 % half-cell EE over 200 hours, and a 94.5 % Faradaic efficiency for CO at an overpotential as low as 430 mV. DFT and X-ray absorption fine structure analyses reveal an electron density reconfiguration in the Sn-Ti-O system. A downshift of the orbital band center of Sn and a charge depletion of Ti collectively facilitate the dissociative adsorption of the desired intermediate COOH* for CO formation. It is also beneficial in maintaining a local alkaline environment to suppress H2 and formate formation, and in stabilizing oxygen atoms to prolong durability. These findings provide a new strategy in materials design for efficient CO2 conversion and beyond.  相似文献   

2.
Conversion of carbon dioxide (CO2) into fuels and chemicals by electroreduction has attracted significant interest, although it suffers from a large overpotential and low selectivity. A Pd‐Sn alloy electrocatalyst was developed for the exclusive conversion of CO2 into formic acid in an aqueous solution. This catalyst showed a nearly perfect faradaic efficiency toward formic acid formation at the very low overpotential of −0.26 V, where both CO formation and hydrogen evolution were completely suppressed. Density functional theory (DFT) calculations suggested that the formation of the key reaction intermediate HCOO* as well as the product formic acid was the most favorable over the Pd‐Sn alloy catalyst surface with an atomic composition of PdSnO2, consistent with experiments.  相似文献   

3.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   

4.
Electrochemical conversion of CO2 into energy‐dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnOx is one of the few catalysts that reduce CO2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO2 porous nanowire catalyst (Sn‐pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO2‐into‐HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only −0.8 V vs. RHE. A comparison with commercial SnO2 nanoparticles confirms that the improved CO2 reduction performance of Sn‐pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO2 conversion industry.  相似文献   

5.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

6.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

7.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

8.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

9.
Electrochemical conversion of CO2 into valued products is one of the most important issues but remains a great challenge in chemistry. Herein, we report a novel synthetic approach involving prolonged thermal pyrolysis of hemin and melamine molecules on graphene for the fabrication of a robust and efficient single‐iron‐atom electrocatalyst for electrochemical CO2 reduction. The single‐atom catalyst exhibits high Faradaic efficiency (ca. 97.0 %) for CO production at a low overpotential of 0.35 V, outperforming all Fe‐N‐C‐based catalysts. The remarkable performance for CO2‐to‐CO conversion can be attributed to the presence of highly efficient singly dispersed FeN5 active sites supported on N‐doped graphene with an additional axial ligand coordinated to FeN4. DFT calculations revealed that the axial pyrrolic nitrogen ligand of the FeN5 site further depletes the electron density of Fe 3d orbitals and thus reduces the Fe–CO π back‐donation, thus enabling the rapid desorption of CO and high selectivity for CO production.  相似文献   

10.
The electrochemical CO2 reduction reaction (CO2RR) to give C1 (formate and CO) products is one of the most techno‐economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7Cu catalyst with a hierarchical Sn‐Cu core can be reconstructed in situ under cathodic potentials of CO2RR. The resulting Sn2.7Cu catalyst achieves a high current density of 406.7±14.4 mA cm?2 with C1 Faradaic efficiency of 98.0±0.9 % at ?0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm?2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at ?0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2RR at low overpotentials.  相似文献   

11.
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper‐derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)‐induced bi‐phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high‐carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high‐carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi‐carbon fuels, including n‐propanol and n‐butane C3–C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.  相似文献   

12.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

13.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

14.
Direct conversion of methane with carbon dioxide to value‐added chemicals is attractive but extremely challenging because of the thermodynamic stability and kinetic inertness of both molecules. Herein, the first dinuclear cluster species, RhVO3?, has been designed to mediate the co‐conversion of CH4 and CO2 to oxygenated products, CH3OH and CH2O, in the temperature range of 393–600 K. The resulting cluster ions RhVO3CO? after CH3OH formation can further desorb the [CO] unit to regenerate the RhVO3? cluster, leading to the successful establishment of a catalytic cycle for methanol production from CH4 and CO2 (CH4+CO2→CH3OH+CO). The exceptional activity of Rh‐V dinuclear oxide cluster (RhVO3?) identified herein provides a new mechanism for co‐conversion of two very stable molecules CH4 and CO2.  相似文献   

15.
Electrochemical conversion of carbon dioxide (CO2) to value‐added products is a possible way to decrease the problems resulting from CO2 emission. Thanks to the eminent conductivity and proper adsorption to intermediates, Pd has become a promising candidate for CO2 electroreduction (CO2ER). However, Pd‐based nanocatalysts generally need a large overpotential. Herein we describe that ultrathin Pd nanosheets effectively reduce the onset potential for CO by exposing abundant atoms with comparatively low generalized coordination number. Hexagonal Pd nanosheets with 5 atomic thickness and 5.1 nm edge length reached CO faradaic efficiency of 94 % at ?0.5 V, without any decay after a stability test of 8 h. It appears to be the most efficient among all of Pd‐based catalysts toward CO2ER. Uniform hexagonal morphology made it reasonable to build models and take DFT calculations. The enhanced activity originates from mainly edge sites on palladium nanosheets.  相似文献   

16.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.? or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm?2 with 95.5±4.0 % CO Faraday efficiency at ?1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.  相似文献   

17.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

18.
Solar CO2 reduction efficiency is largely limited by poor photoabsorption, sluggish electron–hole separation, and a high CO2 activation barrier. Defect engineering was employed to optimize these crucial processes. As a prototype, BiOBr atomic layers were fabricated and abundant oxygen vacancies were deliberately created on their surfaces. X‐ray absorption near‐edge structure and electron paramagnetic resonance spectra confirm the formation of oxygen vacancies. Theoretical calculations reveal the creation of new defect levels resulting from the oxygen vacancies, which extends the photoresponse into the visible‐light region. The charge delocalization around the oxygen vacancies contributes to CO2 conversion into COOH* intermediate, which was confirmed by in situ Fourier‐transform infrared spectroscopy. Surface photovoltage spectra and time‐resolved fluorescence emission decay spectra indicate that the introduced oxygen vacancies promote the separation of carriers. As a result, the oxygen‐deficient BiOBr atomic layers achieve visible‐light‐driven CO2 reduction with a CO formation rate of 87.4 μmol g?1 h?1, which was not only 20 and 24 times higher than that of BiOBr atomic layers and bulk BiOBr, respectively, but also outperformed most previously reported single photocatalysts under comparable conditions.  相似文献   

19.
Hybrid electrodes with improved O2 tolerance and capability of CO2 conversion into liquid products in the presence of O2 are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2 molecule and the basic amino group of aniline renders enhanced CO2 separation from O2. Loaded with a cobalt phthalocyanine‐based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2 in the CO2 feed gas. The electrode can still produce CO at an O2/CO2 ratio as high as 9:1. Switching to a Sn‐based catalyst, for the first time O2‐tolerant CO2 electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm?2 in the presence of 5 % O2.  相似文献   

20.
Gas‐phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with glycine results in the formation of [(R)2Sn(Gly)‐H]+and [(R)3Sn(Gly)]+ ions, respectively. Di‐organotin complexes appear much more reactive than those involving tri‐organotins. (MS/MS) spectra of the [(R)3Sn(Gly)]+ ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn]+ carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)‐H]+complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH]+ (?57 u),[(R)2SnNH2]+( ?58 u) and [(R)2SnH]+ (?73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH]+and [(R2)SnNH2]+ions. Interestingly, formation [(R)2SnH]+ ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)‐H]+complexes, a preferable bidentate interaction of the type η2‐O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn]+ ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号