首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, C14H11NO4, consists of a methoxy‐substituted coumarin skeleton fused to a 2‐methyl‐4‐pyridone ring. The ring system of the mol­ecule is approximately planar and the methoxy group is roughly coplanar with the ring plane. The 4‐pyridone ring exists in a 4‐hydroxy tautomeric form and is stabilized by an intramolecular hydrogen bond between the O—H and C=O groups. Comparison of the results with those found for other structures containing the 4‐pyridone substructure reveals a substantial effect of the nature of the substituents bonded to the pyridine ring on the keto–enol tautomerism.  相似文献   

2.
A collective synthesis of 4‐hydroxy‐2‐pyridone alkaloids—specifically, pretenellin B, prebassianin B, farinosone A, militarione D, pyridovericin, and torrubiellone C—has been achieved. Key steps include using a strategic convergent method to synthesize the densely substituted pyridone key intermediate by Suzuki–Miyaura cross‐coupling reaction, a divergent synthesis approach of target molecules by aldol condensation of pyridone intermediate with homologous aldehydes, and an iterative synthesis of homologous aldehydes with all‐trans‐polyene backbones. Interestingly, among the six tumor cell lines investigated, torrubiellone C was found to induce potent and apoptotic inhibitory activities on Jurkat T cells with IC50 values of 7.05 μM . Hence, this approach could potentially contribute to the synthesis of bioactive small‐molecule libraries as well as drug discovery.  相似文献   

3.
Transition metal catalyzed C?H functionalizations have been developed as powerful methods for C?C bond formations. Directing groups, removable directing groups, traceless directing groups, and transient directing groups (TDGs) have been successfully used to improve the reaction efficiencies. For the development of greener and more sustainable methods, C?H functionalization using a TDG that also serves as a reagent in aqueous solvent was investigated. The palladium‐catalyzed C?H functionalization of tryptamine derivatives using ketones in water successfully generated tetrahydro‐β‐carbolines with a quaternary carbon center at C1. Deuterium‐labeling experiments are discussed to provide insight into the mechanism. The C2‐position of pyridine was also successfully functionalized by this strategy.  相似文献   

4.
The dimethylamino (Me2N) group is arguably the most versatile functional group capable of highly efficient and site‐selective directed aromatic functionalizations at the ortho‐, meta‐, and para‐positions depending on reaction conditions. While the repertoire of Me2N‐directed reactions is growing at a rapid pace, the lack of a general method to transform this group to other functionalities hampers its wider application in organic synthesis. Here we report nickel‐catalyzed C?N borylations of aryl‐ and benzyl‐dimethylamines that permit the conversion of a huge library of largely underutilized Me2N‐containing organic molecules into various functional molecules by taking advantage of the wealth of existing C?B functionalization methods.  相似文献   

5.
Tao He  Min Wang  Pinhua Li  Lei Wang 《中国化学》2012,30(4):979-984
A highly efficient method for the synthesis of unsymmetrical multi‐substituted 1,2,3‐triazoles via a direct Pd‐NHC system catalyzed C(5)‐arylation of 1,4‐disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C? H bond functionalizations of 1,2,3‐triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100°C under air.  相似文献   

6.
Crystals of 5‐hydroxy‐6‐methyl‐2‐pyridone, (I), grown from a variety of solvents, are invariably trigonal (space group R); these are 5‐hydroxy‐6‐methyl‐2‐pyridone acetone 0.1667‐solvate, C6H7NO2·0.1667C3H6O, (Ia), and 6‐methyl‐5‐hydroxy‐2‐pyridone propan‐2‐ol 0.1667‐solvate, C6H7NO2·0.1667C3H8O, (Ib), and the forms from methanol, (Ic), water, (Id), benzonitrile, (Ie), and benzyl alcohol, (If). They incorporate channels running the length of the c axis that contain extensively disordered solvent molecules. A solvent‐free sublimed powder of 5‐hydroxy‐6‐methyl‐2‐pyridone microcrystals is essentially isostructural. Inversion‐related host molecules interact via pairs of N—H...O hydrogen bonds to form R22(8) dimers. Six of these dimers form large R126(42) puckered rings, in which the O atom of each N—H...O hydrogen bond is also the acceptor in an O—H...O hydrogen bond that involves the 5‐hydroxy group. The large R126(42) rings straddle the axes and form stacked columns viaπ–π interactions between inversion‐related molecules of (I) [mean interplanar spacing = 3.254 Å and ring centroid–centroid distance = 3.688 (2) Å]. The channels are lined by methyl groups, which all point inwards to the centre of the channels.  相似文献   

7.
Nickel hydride (NiH) catalyzed hydrocarbonation has emerged as an efficient approach to construct new C?C bonds containing at least one C(sp3) center. However, the regioselectivity of this reaction is by far dictated by substrates. Described here is a strategy to achieve two different regioselectivites of hydroalkylation of the same substrates by using ligand control. This strategy enables the first regiodivergent hydroalkylation of 3‐pyrrolines, yielding both 2‐ and 3‐alkylated pyrrolidines, valuable synthetic intermediates and common motifs in many bioactive molecules. This method demonstrates broad scope and high functional‐group tolerance, and can be applied in late‐stage functionalizations.  相似文献   

8.
A RhIII‐catalyzed strategy was developed for the rapid construction of highly substituted 2‐pyridone scaffolds using α,β‐unsaturated oximes and fluorinated diazomalonate. The reaction proceeds through direct, site‐selective alkylation based on migratory insertion and subsequent cyclocondensation. A wide substrate scope with different functional groups was explored. The requirement of fluorinated diazomalonate was explored for this transformation. The developed methodology was further extended with the synthesis of the bioactive compound.  相似文献   

9.
Rapid synthesis of 3‐cyano‐4,6‐dimethyl‐2‐pyridone 3 , using piprazine as a catalyst was reported. X‐ray data of the 4,6‐dimethyl‐2‐oxo‐1,2‐dihydropyridine‐3‐carbonitrile exhibited its oxo form. Synthesis of isoquinolinecarbonitrile and pyridylpyridazine using compound 3 was investigated. Reactivity of the synthesized pyridone toward different organic reagents was also studied. J. Heterocyclic Chem., (2011).  相似文献   

10.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

11.
Despite recent advances, reactivity and site‐selectivity remain significant obstacles for the practical application of C(sp3)?H bond functionalization methods. Here, we describe a system that combines a salicylic‐aldehyde‐derived L,X‐type directing group with an electron‐deficient 2‐pyridone ligand to enable the β‐methylene C(sp3)?H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site‐ and stereo‐specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

12.
A copper‐mediated C6‐selective dehydrogenative heteroarylation of 2‐pyridones with 1,3‐azoles has been developed. The reaction proceeded smoothly by twofold C? H cleavage even in the absence of noble‐metal catalysts. The observed site selectivity was directed by a pyridyl substituent on the nitrogen atom of the pyridone ring. This directing group was readily removed after the coupling event, thus leading to 2‐pyridone derivatives with a free N? H group. Moreover, in some cases, catalytic turnover of the Cu salt was also possible with the ideal terminal oxidant: molecular oxygen in air.  相似文献   

13.
2,3‐Fused 4‐phenylnaphthalen‐1‐yl carboxylates were synthesized in a step‐ and atom‐economical manner using a ruthenium‐catalyzed hydrocarboxylative cyclization of 1,7‐diaryl‐1,6‐diynes and subsequent oxidative photocyclization. The scope of this novel two‐step process was demonstrated by the construction of diverse structures from substrates with various tethers and terminal aryl groups. Late‐stage C?H functionalizations of the arylnaphthalene product further enhance the synthetic potential of the developed process.  相似文献   

14.
An unprecedented strategy for in situ generation of indole‐based ortho‐quinodimethanes (oQDMs) from 2‐methyl‐3‐alkylmethylindoles by either a metal‐free DDQ‐ or BQ‐mediated dehydrogenative process was developed. These oQDMs were trapped by electron‐deficient dienophiles to provide a facile approach to synthetically valuable tetrahydrocarbazoles, carbazoles, and hetereoacenes. The salient features of this transformation include direct C(sp3) H bond functionalizations, readily available starting materials, metal‐free conditions, high efficiency, operational simplicity, and ease of scale‐up.  相似文献   

15.
The structures of six crystalline inclusion compounds between various host molecules and three guest molecules based on the 2‐pyridone skeleton are described. The six compounds are 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–2‐pyridone (1/2), C14H10O4·2C5H5NO, (I–a), 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–4‐methyl‐2‐pyridone (1/2), C14H10O4·2C6H7NO, (I–c), 1,1′‐biphenyl‐2,2′‐dicarboxylic acid–6‐methyl‐2‐pyridone (1/2), C14H10O4·2C6H7NO, (I–d), 1,1,6,6‐tetraphenyl‐2,4‐hexadiyne‐1,6‐diol–1‐methyl‐2‐pyridone (1/2), C30H22O2·2C6H7NO, (II–b), 1,1,6,6‐tetraphenyl‐2,4‐hexadiyne‐1,6‐diol–4‐methy‐2‐pyridone (1/2), C30H22O2·2C6H7NO, (II–c), and 4,4′,4′′‐(ethane‐1,1,1‐triyl)triphenol–6‐methyl‐2‐pyridone–water (1/3/1), C20H18O3·3C6H7NO·H2O, (III–d). In two of the compounds, (I–a) and (I–d), the host molecules lie about crystallographic twofold axes. In two other compounds, (II–b) and (II–c), the host molecules lie across inversion centers. In all cases, the guest molecules are hydrogen bonded to the host molecules through O—H...O=C hydrogen bonds [the range of O...O distances is 2.543 (2)–2.843 (2) Å. The pyridone moieties form dimers through N—H...O=C hydrogen bonds in five of the compounds [the range of N...O distances is 2.763 (2)–2.968 (2) Å]. In four compounds, (I–a), (I–c), (I–d) and (II–c), the molecules are arranged in extended zigzag chains formed via host–guest hydrogen bonding. In five of the compounds, the guest molecules are arranged in parallel pairs on top of each other, related by inversion centers. However, none of these compounds underwent photodimerization in the solid state upon irradiation. In one of the crystalline compounds, (III–d), the guest molecules are arranged in stacks with one disordered molecule. The unsuccessful dimerization is attributed to the large interatomic distances between the potentially reactive atoms [the range of distances is 4.027 (4)–4.865 (4) Å] and to the bad overlap, expressed by the lateral shift between the orbitals of these atoms [the range of the shifts from perfect overlap is 1.727 (4)–3.324 (4) Å]. The bad overlap and large distances between potentially photoreactive atoms are attributed to the hydrogen‐bonding schemes, because the interactions involved in hydrogen bonding are stronger than those in π–π interactions.  相似文献   

16.
The imidazo[1,2‐a]pyridines are an important target in organic synthetic chemistry and have attracted critical attention of chemists mainly due to the discovery of the interesting properties exhibited by a great number of imidazo[1,2‐a]pyridine derivatives. Although lots of synthetic methods of imidazo[1,2‐a]pyridines have been developed in the past years, the chemistry community faces continuing challenges to use green reagents, maximize atom economy and enrich the functional group diversity of product. Undoubtedly, with its low cost and lack of environmentally hazardous byproducts, cascade reactions and C?H functionalizations are ideal strategies for this field. In this record we highlight some of our progress toward the goal to synthesis of imidazo[1,2‐a]pyridine derivatives through carbene transformations or C?H functionalizations.  相似文献   

17.
An unprecedented strategy for in situ generation of indole‐based ortho‐quinodimethanes (oQDMs) from 2‐methyl‐3‐alkylmethylindoles by either a metal‐free DDQ‐ or BQ‐mediated dehydrogenative process was developed. These oQDMs were trapped by electron‐deficient dienophiles to provide a facile approach to synthetically valuable tetrahydrocarbazoles, carbazoles, and hetereoacenes. The salient features of this transformation include direct C(sp3)? H bond functionalizations, readily available starting materials, metal‐free conditions, high efficiency, operational simplicity, and ease of scale‐up.  相似文献   

18.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

19.
The anodic C?C cross‐coupling reaction is a versatile synthetic approach to symmetric and non‐symmetric biphenols and arylated phenols. We herein present a metal‐free electrosynthetic method that provides access to symmetric and non‐symmetric meta‐terphenyl‐2,2′′‐diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell. The synthesis of non‐symmetric meta‐terphenyl‐2,2′′‐diols required two electrochemical steps. The reactions are easy to conduct and scalable. The method also features a broad substrate scope, and a large variety of functional groups are tolerated. The target molecules may serve as [OCO]3? pincer ligands.  相似文献   

20.
The first iridium‐catalyzed intermolecular asymmetric allylic amination reaction with 2‐hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N‐substituted 2‐pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2‐hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98 % yield and 99 % ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号