首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Novel L ‐alanine and L ‐glutamic acid derivatized, carbazole‐containing N‐propargylamides [N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide and N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] were synthesized and polymerized with (nbd)Rh+6‐C6H5B?(C6H5)3] (nbd = norbornadiene) as a catalyst to obtain the corresponding polymers with moderate molecular weights in high yields. Polarimetry, circular dichroism, and ultraviolet–visible spectroscopy studies revealed that both poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] took a helical structure with a predominantly one‐handed screw sense in tetrahydrofuran, CHCl3, and CH2Cl2. The helix content of poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] could be tuned by heat or the addition of a protic solvent, and the helical sense of poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] was inverted by heat in CHCl3 or in mixtures of tetrahydrofuran and CH2Cl2. Poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] also took a helical structure in film states. They showed small fluorescence in comparison with the monomers and redox activity based on carbazole. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 253–261, 2007  相似文献   

3.
The surface of Fe3O4@SiO2 nanoparticles was modified using l ‐arginine as a green and available amino acid to trap palladium nanoparticles through a strong interaction between the metal nanoparticles and functional groups of the amino acid. The proposed green synthetic method takes advantage of nontoxic reagents through a simple procedure. Characterization of Fe3O4@SiO2@l ‐arginine@Pd(0) was done using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analysis. The catalytic activity of Fe3O4@SiO2@l ‐arginine@Pd(0) as a new nanocatalyst was investigated in C – C coupling reactions. Waste‐free, use of green medium, efficient synthesis leading to high yield of products, eco‐friendly and economic catalyst, excellent reusability of the nanocatalyst and short reaction time are the main advantages of the method presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Lanthanum (La) supported on tin oxide‐titanium oxide (SnO2‐TiO2 ) nanoparticles were prepared by a sol–gel method followed by a hydrothermal method. Effect of different solvents (ethyl acetate, benzyl alcohol, ethylene glycol) on the particle size and catalytic activity was investigated. The nanomaterial was characterized by transmission electron microscopy, powder X‐ray diffraction, scanning electron microscopy, fourier transform infrared spectroscopy, and energy dispersive X‐ray. The catalytic and optical properties were studied using solid‐phase spectrophotometry and ultraviolet–visible spectroscopy, respectively. Gas chromatography‐mass spectrometry (GC‐MS) was used to detect the intermediates during the catalytic degradation of methylene blue. It was observed that with decrease in the dielectric constant (ε) of the solvent, the bandgap and particle size decrease and catalytic efficiency increases. Hence, the highest catalytic activity was observed with the solvent having the least dielectric constant.  相似文献   

5.
《化学:亚洲杂志》2017,12(19):2597-2603
In this paper, an Ag‐doped WO3 (and MoO3) composite has been prepared by following a simple micelle‐directed method and high‐temperature sintering route. The as‐prepared samples were characterized by X‐ray diffraction, inductively coupled plasma, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV/Vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller, photoluminescence spectroscopy, and electrochemical impedance spectroscopy techniques. The photocatalytic experiments reveal that their oxygen‐production rates are up to 95.43 μmol (75.45 μmol) for Ag‐doped WO3 (MoO3), which is 9.5 (7.3) times higher than that of pure WO3: 9.012 μmol (MoO3: 9.00 μmol) under visible‐light illumination (λ ≥420 nm), respectively. The improvement of their photocatalytic activity is attributed to the enhancement of their visible‐light absorption and the separation efficiency of photogenerated carriers by Ag doping. Moreover, Ag‐doped WO3 (MoO3) also shows excellent adsorption of rhodamine B (RhB) and methylene blue (MB) in aqueous solution, with maximum adsorption capacities towards RhB and MB of 822 and 820 mg g−1 for Ag‐doped WO3, and 642 and 805 mg g−1 for Ag‐doped MoO3, respectively.  相似文献   

6.
The amino acid arginine was used to modify the surface of graphene oxide nanosheets and then nickel‐substituted cobalt ferrite nanoparticles were supported on those arginine‐grafted graphene oxide nanosheets (Ni0.5Co0.5Fe2O4@Arg–GO). The prepared Ni0.5Co0.5Fe2O4@Arg–GO was characterized using flame atomic absorption spectroscopy, inductively coupled plasma optical emission spectrometry, energy‐dispersive spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, Raman spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The application of Ni0.5Co0.5Fe2O4@Arg–GO as a catalyst was examined in a one‐pot tandem oxidative cyclization of primary alcohols with o ‐phenylenediamine to benzimidazoles under aerobic oxidation conditions. The results showed that 2‐phenylbenzimidazole derivatives were successfully achieved using Ni0.5Co0.5Fe2O4@Arg–GO nanocomposite catalyst via the one‐pot tandem oxidative cyclization strategy.  相似文献   

7.
We report here a facile method to obtain folic acid (FA)‐protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl4/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA‐protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The intracellular uptake of these nanoparticles is facilitated by HeLa cells overexpressing the folate reporter, which itself is significantly inhibited by free FA in a competitive assay as quantified by inductively coupled plasma mass spectroscopy (ICP‐MS). This simple one‐step approach affords a new perspective for creating functional nanomaterials, and the resulting biocompatible, functional Au NPs may find some prospective applications in various biomedical fields.  相似文献   

8.
Eight water‐soluble 1,1′‐dimethylvanadocene amino acid complexes have been prepared via the reaction of (MeCp)2VCl2 ( 2 ) with one equivalent of amino acid (aa) in water affording [(MeCp)2V( aa )]Cl, where aa is glycine ( 3 ), L ‐alanine ( 4 ), L ‐valine ( 5 ), L ‐leucine ( 6 ), L ‐isoleucine ( 7 ), L ‐phenylalanine ( 8 ), L ‐histidine ( 9 ) and L ‐tryptophane ( 10 ). All prepared complexes have been characterized by EPR, IR and Raman spectroscopy, elemental analysis and mass spectrometry. Molecular structures of [(MeCp)2V(ala)]BPh4·CH3OH ( 11 ), [(MeCp)2V(leu)]PF6 ( 12 ) and [(MeCp)2V(ile)]PF6 ( 13 ) were determined by X‐ray diffraction analysis. Cytotoxic properties of complexes 2–10 were investigated toward Escherichia coli B and compared with analogical unsubstituted vanadocene compounds ( 1, 14–21 ). The results showed that 1,1′‐dimethylvanadocene amino acid complexes have identical or slightly higher antiproliferative activity then their unsubstituted analogs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
An elementary and ecological method has been designed for the biosynthesis of palladium nanoparticles, through the utilization of aqueous extract of red tea (Hibiscus sabdariffa L.) as a reducing and stabilizing agent. The nanoparticles obtained were characterized through UV–visible spectroscopy, transmission election microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning election microscopy, energy‐dispersive X‐ray analysis and inductively coupled plasma analysis. The nanoparticles with spherical shape and dimensions of approximately 10 nm were used as a heterogeneous catalyst for Suzuki coupling reactions under mild conditions. The high efficiency of the catalytic reaction was affirmed by the good yields of products, easy work‐up, absence of palladium leached from the support and smooth recovery of catalyst.  相似文献   

10.
A facile and green route for the synthesis of palladium nanoparticles was developed utilizing non‐toxic and renewable natural Rosa canina fruit extract as the reducing, stabilizing and capping agent, and they were applied as a heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties in water under moderate reaction conditions. The structural investigation of the generated nanoparticles was performed with UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy‐dispersive X‐ray analysis. The method has some advantages such as high yields, efficiency, elimination of surfactant, chemical reductants, ligand and organic solvent, economic, cleaner reaction profiles, heterogeneous catalysis, simple methodology and easy workup. The catalyst can be recovered and reused seven times without any significant decrease in catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A cis ‐dioxomolybdenum(VI) complex was prepared with MoO2(acac)2 and a Schiff base ligand (2‐((2‐hydroxybenzylidene)amino)‐3‐(1H ‐indol‐3‐yl)propanoic acid) derived from salicylaldehyde and l ‐tryptophan in ethanol and designated as [MoO2(Sal‐Tryp)(EtOH)]. It was characterized using several techniques including thermogravimetric and elemental analyses and mass, Fourier transform infrared and UV–visible spectroscopies. Theoretical calculations were performed using density functional theory for studying the molecular structure. An in vitro antibacterial activity evaluation showed that [MoO2(Sal‐Tryp)EtOH] complex exhibits good inhibitory effects against Gram‐positive (Bacillus subtilis , Staphylococcus aureus ) and Gram‐negative (Escherichia coli , Pseudomonas aeruginosa ) bacteria in comparison to standard antibacterial drugs. It was also found that [MoO2(Sal‐Tryp)EtOH] complex successfully catalyses the epoxidation of cyclooctene, norbornene, cyclohexene, styrene, α‐methylstyrene and trans ‐stilbene, with 45–100% conversions and 64–100% selectivities. Based on the obtained results, the heterogeneity and reusability of the catalyst seem promising.  相似文献   

12.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

13.
Surface‐modified CdS nanoparticles selectively dispersed in hexagonally packed poly(ethylene oxide) (PEO) cylinders of poly(styrene‐b‐ethylene oxide) (PSEO) block copolymers were prepared. The photoluminescence and ultraviolet–visible characteristics of the presynthesized CdS nanoparticles in N,N‐dimethylformamide and in PEO domains of the PSEO block copolymers were determined. Because of strong interactions between the CdS nanoparticles and PEO chains, as shown by Fourier transform infrared spectroscopy, the incorporation of the CdS nanoparticles prevented the PEO cylinders from properly crystallizing; this was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. The intercylinder distance between the swollen and reduced‐crystallinity CdS/PEO cylinders in turn increased, as confirmed by small‐angle X‐ray scattering and transmission electron microscopy. At a high CdS concentration (43 wt % or 8.3 vol % with respect to PEO), however, the hexagonally packed cylindrical nanostructure of the PSEO diblock copolymers was destroyed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1220–1229, 2005  相似文献   

14.
Covalent surface functionalization of synthesized ZnO nanoparticles (NP)s with ethylenediaminetetraacetic acid (EDTA) was successfully carried out. Modified ZnO‐EDTA NPs as a viable and inexpensive filler were incorporated into poly(vinyl chloride) PVC matrix after their chemical modification to investigate the agglomeration behavior. All prepared materials including modified NPs and PVC/ZnO‐EDTA nanocomposites (NC)s were analyzed by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. Fabricated PVC/ZnO‐EDTA NCs were reported to have high transparency and improved mechanical properties compared with PVC. Modified ZnO and the fabricated NCs were shown to exhibit excellent antibacterial activity against two bacteria species: Escherichia coli and Staphylococcus aureus. The obtained NCs could be considered as self‐extinguishing materials on the basis of the LOI values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
《中国化学会会志》2017,64(7):727-731
Mn‐[4‐chlorophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 ([Mn‐4CSMP ]Cl2) as nano‐Schiff base complex was prepared and fully characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermal gravimetric analysis, derivative thermogravimetry, scanning electron microscopy, energy‐dispersive X‐ray analysis, and UV–vis spectroscopy. The reactivity of nano‐[Mn‐4CSMP ]Cl2 as a catalyst was tested on the tandem cyclocondensation–Knoevenagel condensation–Michael reaction between phenylhydrazine and ethyl acetoacetate with various aromatic aldehydes to give 4,4′‐(arylmethylene)‐bis‐(3‐methyl‐1‐phenyl‐1H ‐pyrazol‐5‐ol)s derivatives.  相似文献   

16.
Cu nanoparticles surface‐capped by alkanethiols were synthesized using ligand exchange method in a two‐phase system. The effects of synthetic conditions, including the pH value of CuSO4 solution, the ratio of cetyltrimethyl ammonium bromide to CuSO4, and reaction temperature, on the size and shape of as‐synthesized Cu nanoparticles were investigated. As‐synthesized Cu nanoparticles surface‐capped by alkanethiols with different chain lengths (CxS‐Cu) were characterized by means of X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectrometry, and ultraviolet–visible light spectrometry. The tribological behavior of CxS‐Cu as an additive in liquid paraffin was evaluated with a four‐ball machine. Results indicate that cetyltrimethyl ammonium bromide plays an important role in controlling the dispersion of Cu nanoparticles before adding modifier octanethiol into the reaction solution. CxS‐Cu nanoparticles as additive in liquid paraffin possess excellent antiwear and friction‐reduction performance because of the deposition of nano‐Cu with low melting point on worn steel surface leading to the formation of a self‐repairing protective layer thereon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A one‐pot green method for the synthesis of palladium nanoparticles (Pd‐NPs) supported on Pistacia atlantica kurdica (P. a. kurdica) gum is described. This natural gum is used as a reducing and stabilising agent. The formation of the Pd‐NPs/P. a. kurdica gum catalyst was verified using several techniques, such as Fourier transform infrared spectroscopy, ultraviolet–visible spectrophotometry, scanning and transmission electron microscopies, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, dynamic light scattering and wavelength‐dispersive X‐ray spectroscopy. The Pd‐NPs stabilised by P. a. kurdica gum were employed as a heterogeneous catalyst in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions at low palladium loading (0.1 mol%) under aerobic, phosphine‐free and ligand‐free conditions in water. Product yields of up to 98%, a facile work‐up, no evidence of leached palladium from the catalyst surface and smooth recovery of the catalyst, which can be reused at least eight times, confirm the efficiency of the catalysts in the reactions investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
l ‐Proline has been successfully anchored on the surface of magnetic nanoparticles and characterized using powder X‐ray diffraction, scanning electron microscopy, vibrating sample magnetometry and Fourier transform infrared spectroscopy. These nanoparticles as a chiral catalyst have been employed to promote the direct asymmetric Mannich reaction. The corresponding products are obtained in high yields with high level of diastereoselectivity (up to 99:1 dr) in the presence of Fe3O4– l ‐proline. Also this heterogeneous catalyst can be recovered easily and reused many times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   

20.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号