首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemiluminescence (ECL) is the light production triggered by reactions at the electrode surface. Its intrinsic features based on a dual electrochemical/photophysical nature have made it an attractive and powerful method across diverse fields in applied and fundamental research. Herein, we review the combination of ECL with semiconductor (SC) materials presenting various typical dimensions and structures, which has opened new uses of ECL and offered exciting opportunities for (bio)sensing and imaging. In particular, we highlight this particularly rich domain at the interface between photoelectrochemistry, SC material chemistry and analytical chemistry. After an introduction to the ECL and SC fundamentals, we gather the recent advances with representative examples of new strategies to generate ECL in original configurations. Indeed, bulk SC can be used as electrode materials with unusual ECL properties or light-addressable systems. At the nanoscale, the SC nanocrystals or quantum dots (QDs) constitute excellent bright ECL nano-emitters with tuneable emission wavelengths and remarkable stability. Finally, the challenges and future prospects are discussed for the design of new detection strategies in (bio)analytical chemistry, light-addressable systems, imaging or infrared devices.

The combination of electrochemiluminescence and semiconductor gives rise to a rich field at the interface of photoelectrochemistry, materials and analytical chemistry. It offers interesting possibilities for ultrasensitive (bio)detection, imaging and light conversion.  相似文献   

2.
Ligand‐protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation‐induced ECL (AIECL) for 6‐aza‐2‐thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT‐AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine‐capped AuNCs. The drying enabled dual‐enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters.  相似文献   

3.
Here we report the first observation of active waveguide of electrochemiluminescence (ECL) in single crystalline molecular wires self‐assembled from cyclometalated iridium(III) complexes, namely tris(1‐phenylisoquinoline‐C2, N) (Ir(piq)3). Under dark conditions, the molecular wires deposited on the electrode surface can act as both ECL emitters and active waveguides. As revealed by ECL microscopy, they exhibit the typical characteristics of optical waveguides, transmitting ECL and generating much brighter ECL emission at their terminals. Moreover, self‐generated ECL can be confined inside the molecular wire and propagates along the longitudinal direction as far as ≈100 μm to the terminal out of touch with the electrode. Therefore, this one‐dimensional crystalline molecular wire‐based waveguide offers the opportunity to switch the electrochemically generated ECL to remote light emission in non‐conductive regions and is promising for contactless electrochemical analysis and study of (bio)chemical systems.  相似文献   

4.
《Electroanalysis》2005,17(19):1761-1769
The electrochemistry and electrochemiluminescence (ECL) properties of acridan phosphate ester are reported. Electrochemical oxidation of 9‐(phenylthiophosphoryloxymethylidene)‐10‐methylacridan disodium salt (Compound 1) yields the corresponding acridinium ester. The latter undergoes a fast reaction with hydrogen peroxide forming an intermediate, which produces electronically excited 9‐methyl acridone and emits blue light after relaxation to the ground state. The electrochemical oxidation of this compound appears to occur in two one‐electron steps and light emission is observed for both steps. The chemiluminescence reaction could also be triggered by electrochemical oxidation of Compound 1 in the absence of H2O2 when the solution was saturated with O2. Mechanisms for these reactions based on ECL, voltammetry and in situ UV‐vis identification of the oxidation products are proposed. Due to the low electrode potential required to achieve ECL emission and the occurrence of light emission in the absence of hydrogen peroxide, this compound is proposed as a label for rapid and sensitive determination of biomolecules in automated analysis.  相似文献   

5.
A new configuration of detection cell has been designed for convenient magnetic particles (MPs)‐based electrochemiluminescence (ECL) assays preformed on the instruments in which the photomultiplier tube is under the working electrode (WE) side. The design provides easy physical cleaning of WE and avoids impurity precipitates depositing on the electrode surface. Subsequently, effects of different MPs without and with graphene (named CMNs and GHPMNs, respectively) on ECL efficiency were compared for the first time. CMNs would decrease the ECL due to the low conductivity of Fe3O4 itself. Because of the intrinsic high conductivity of graphene, GHPMNs could lead to 6–7‐fold increase in ECL intensity.  相似文献   

6.
The study of the composition, morphology, and surface structure of carbon dots (Cdots) is critical to understanding their effect on the photo‐ and electrochemiluminescence (PL and ECL) of Cdots in selected applications. Herein, two kinds of Cdots were prepared with 3‐(3,4‐dihydroxyphenyl)‐L ‐alanine (L ‐DOPA) as precursor. The Cdots prepared by using a carbonization‐extraction strategy have a low oxidation level and are denoted as reduced Cdots (r‐Cdots). The Cdots obtained with a carbonization‐oxidation process are highly oxidized and are denoted as oxidized Cdots (o‐Cdots). The o‐Cdots have a carbon core and oxygen‐containing loose shell, but the r‐Cdots consist mainly of the carbon core. Whereas r‐Cdots have a strong blue PL but no apparent ECL response, o‐Cdots exhibit a relatively weak PL and strong ECL emission. These properties allow for selected applications of the Cdots. The r‐Cdots were used in cell imaging with their high PL emission. The o‐Cdots, with their high ECL efficiencies, were selected to sense Cu2+ with Cu2+‐inducing ECL quenching in the o‐Cdots/K2S2O8 system. This work provides the possibility to control the composition of Cdots for selected applications and shows a good way to characterize surface traps of Cdots because ECL is characterized by the surface‐state and PL is mainly related to the core‐state in Cdots.  相似文献   

7.
Polyethyleneimine‐functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt‐induced aggregation, enabling them to be employed even under high‐salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2,2′‐bipyridyl)ruthenium(II). An HBPEI‐coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3‐aminopropyltriethoxysilane‐treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G‐quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.  相似文献   

8.
Copper nanoclusters (CuNCs) are emerging electrochemiluminescence (ECL) emitters with unique molecule-like electronic structures, high abundance, and low cost. However, the synthesis of CuNCs with high ECL efficiency and stability in a scalable manner remains challenging. Here, we report a facile gram-scale approach for preparing self-assembled CuNCs (CuNCsAssy) induced by ligands with exceptionally boosted anodic ECL and stability. Compared to the disordered aggregates that are inactive in ECL, the CuNCsAssy shows a record anodic ECL efficiency for CuNCs (10 %, wavelength-corrected, relative to Ru(bpy)3Cl2/tripropylamine). Mechanism studies revealed the unusual dual functions of ligands in simultaneously facilitating electrochemical excitation and radiative transition. Moreover, the assembly addressed the limitation of poor stability of conventional CuNCs. As a proof of concept, an ECL biosensor for alkaline phosphatase detection was successfully constructed with an ultralow limit of detection of 8.1×10−6 U/L.  相似文献   

9.
Highly efficient detection in the aqueous phase for water‐insoluble organic molecule probes is challenging. The bright aggregated‐state electrochemiluminescence (ECL) of 1,1‐disubstituted 2,3,4,5‐tetraphenylsiloles by a co‐reactant approach was discovered, and a heterogeneous aggregation‐induced emission ECL (HAIE‐ECL) was constructed at the electrode surface, showing very high ECL efficiency (37.8 %) and selective recognition for industrially important DNBP plasticizer with a low detection limit of 0.15 nm in the water phase. A mechanistic study indicates that ECL is mainly generated due to the high electron affinity of siloles and restriction of the intramolecular motions caused by their propeller‐like noncoplanar structures. This system realizes the sensing of organic‐based ECL in the water phase by solving the crucial problems of water insolubility and aggregation‐caused quenching (ACQ), and demonstrates potential for further application because of its design and high efficiency.  相似文献   

10.
A simple method for immobilization of tri(4,7‐diphenyl‐1,10‐phenanthroline) ruthenium(II) ditetrakis(4‐chlorophenyl) borate ([Ru(dpp)3][(4‐Clph)4B]2) on carbon fiber electrodes was developed. Excellent electrochemical activity and electrochemiluminescence (ECL) signal of the coated carbon fiber electrodes were observed using oxalate as the co‐reactant. In addition, the effects of pH, scan rate, nitrogen and oxygen on ECL intensity were also studied. To demonstrate the reliability, the coated carbon fiber electrodes were used as ECL detectors and very low concentration of phenol was detectable (5.0×10?8 M).  相似文献   

11.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

12.
A approach was successfully employed for constructing a solid‐state electrochemiluminescence (ECL) immunosensor by layer‐by‐layer self‐assembly of multiwall carbon nanotubes (MWCNTs)‐Nafion composite film, Ru(bpy)32+/nano‐Pt aggregates (Ru‐PtNPs) and Pt nanoparticles (PtNPs). The influence of Pt nanoparticles on the ECL intensity was quantitatively evaluated by calculating the electroactive surface area of different electrodes with or without PtNPs to immobilize Ru(bpy)32+. The principle of ECL detection for target α‐fetoprotein antigen (AFP) was based on the increment of resistance after immunoreaction, which led to a decrease in ECL intensity. The linear response range was 0.01–10 ng mL?1 with the detection limit of 3.3 pg mL?1. The immunosensor exhibited advantages of simple preparation and operation, high sensitivity and good selectivity.  相似文献   

13.
The most efficient and commonly used electrochemiluminescence (ECL) emitters are luminol, [Ru(bpy)3]2+, and derivatives thereof. Luminol stands out due to its low excitation potential, but applications are limited by its insolubility under physiological conditions. The water‐soluble m‐carboxy luminol was synthesized in 15 % yield and exhibited high solubility under physiological conditions and afforded a four‐fold ECL signal increase (vs. luminol). Entrapment in DNA‐tagged liposomes enabled a DNA assay with a detection limit of 3.2 pmol L?1, which is 150 times lower than the corresponding fluorescence approach. This remarkable sensitivity gain and the low excitation potential establish m‐carboxy luminol as a superior ECL probe with direct relevance to chemiluminescence and enzymatic bioanalytical approaches.  相似文献   

14.
Amine‐rich nitrogen‐doped carbon nanodots (NCNDs) have been successfully used as co‐reactant in electrochemiluminescence (ECL) processes. Primary or tertiary amino groups on NCNDs have been studied as co‐reactant sites for Ru(bpy)32+ ECL, showing their eligibility as powerful alternatives to tripropylamine (TPrA). We also report the synthesis and ECL behavior of a new covalently linked hybrid of NCNDs and Ru(bpy)32+. Notably, the NCNDs in the hybrid act both as carrier for ECL labels and as co‐reactant for ECL generation. As a result, the hybrid shows a higher ECL emission as compared to the combination of the individual components, suggesting the self‐enhancing ECL of the ruthenium complex due to an intramolecular electron transfer process.  相似文献   

15.
Ligand-protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation-induced ECL (AIECL) for 6-aza-2-thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT-AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine-capped AuNCs. The drying enabled dual-enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters.  相似文献   

16.
《Electroanalysis》2017,29(2):466-471
A novel, stable, solid‐state and stereoselective electrochemiluminescence (ECL) sensor has been designed to enantioselectively discriminate ascorbic acid (AA) and isoascorbic acid (IAA) by immobilizing Ru(bpy)32+ (Ru), thiolated β‐cyclodextrin (β‐CD‐SH) and gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables (GP‐CSCN) on glassy carbon electrode. All chemical compounds could be immobilized on the surface of electrode stably through nafion film, and high stereoselectivity could be introduced to the sensor via the synergistic effects of the β‐CD‐SH and GP‐CSCN nanomaterials. When the developed sensor interacted with AA and IAA, obvious difference of ECL intensities was observed, and a larger intensity was obtained from AA, which indicated that this strategy could be employed to enantioselectively recognize AA and IAA. As a result, ECL technique might act as a promising method for recognition of chiral compounds.  相似文献   

17.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

18.
This paper reports on a rapid and sensitive method for the simultaneous determination of ascorbic acid (H2A), dehydroascorbic acid (DHA), and total vitamin C by electrochemiluminescence (ECL) using a thin-layer electrochemical cell. Significant ECL signals can be generated by the anodic oxidation of Ru(bpy)3 2+ in the presence of H2A or DHA in pH 8.8 phosphate buffer solution. Because of the extremely small dead volume of the thin-layer cell (approximately 1.5 μL), almost all amount of H2A is assumed to be completely oxidized to DHA with a short pre-electrolysis step. As a result, it is possible to determine the reductive vitamin C (H2A) by square wave voltammetry before the pre-electrolysis step, while total vitamin C (sum of H2A and DHA) is able to be determined at a subsequent ECL step. The method was employed for the determination of vitamin C in commercial beverages with the analytical results in good agreement with the certified values.
Figure
(A) A novel thin-layer electrochemical cell is designed for the determination of ascorbic acid, dehydroascorbic acid (DHA) by Ru(bpy)3 2+ based electrochemiluminescence (ECL) protocol. (B) ECL responses for DHA with different concentration levels  相似文献   

19.
In this work, we chose tris(2,2′-bipyridyl)ruthenium(II)hexafluorophosphate(Ru(bpy)3(PF6)2), a metal-organic complex material,to prepare nanowires, which were subsequently applied for the construction of electrochemiluminescence(ECL) biosensor by immobilizing them onto a glassy carbon electrode(GCE) with graphene-Nafion composite films. The graphene therein, being a two-dimensional carbon nanomaterial with outstanding electronic properties, can obviously improve the conductivity of the Nafion film, as well as enhance the electrochemical signal and ECL intensity of the Ru(bpy)3(PF6)2 nanowires(RuNWs) at low graphene concentration. The developed biosensor exhibited excellent ECL stability with tripropylamine(TPrA) as co-reactant. The ECL biosensor exhibited high sensitive ECL response in a wide linear range and low detection limit for the detection of proline. It is considered that the oxidation products of proline would be responsible for the ECL enhancement. The large electro-active area of the nanowires and the enhancement effect of the graphene played critical roles in the high detection performance of the ECL biosensor. The results demonstrated herein may provide a useful enlightenment for the design of more sensitive ECL biosensors.  相似文献   

20.
A simple, rapid and sensitive CE method coupled with electrochemiluminescence (ECL) detection for direct analysis of ibandronate (IBAN) has been developed. Using a buffer solution of 20 mM sodium phosphate (pH 9.0) and a voltage of 13.5 kV, separation of IBAN in a 30‐cm length capillary was achieved in 3 min. ECL detection was performed with an indium tin oxide working electrode bias at 1.6 V (versus a Pt wire reference) in a 200‐mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)32+ (where bpy=2,2′‐bipyridyl). Derivatization of IBAN prior to CE‐ECL analysis was not needed. Linear correlation (r=0.9992, n=7) between ECL intensity and analyte concentration was obtained in the range of 0.25–50 μM IBAN. The LOD of IBAN in water was 0.08 μM. The developed method was applied to the analysis of IBAN in a drug formulation and human urine sample. SPE using magnetic Fe3O4@Al2O3 nanoparticles as the extraction phase was employed to pretreat the urine sample before CE‐ECL analysis. The linear range was 0.2–12.0 μM IBAN in human urine (r=0.9974, n=6). The LOD of IBAN in urine was 0.06 μM. Total analysis time including sample preparation was <1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号