首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

2.
The first dispersive liquid liquid microextraction scheme followed by liquid chromatography‐post column derivatization for the determination of the antiviral drug rimantadine in urine samples is demonstrated. The effect of the type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time, and centrifugation speed on the extraction efficiency were studied. Rimantadine and the internal standard (amantadine) were chromatographed using a reversed phase monolithic stationary phase with a mixture of equal volumes of methanol and phosphate buffer (pH = 3) as mobile phase. On‐line post‐column derivatization of the analyte was performed using a “two‐stream” manifold with o‐phthalaldehyde and N‐acetyl‐cysteine at alkaline medium. Under the optimized extraction conditions, the enrichment factor of rimantadine was 58. The linear range was 5–100 µg/L with correlation coefficient r of 0.9984 while the limit of detection achieved was 0.5 µg/L. The within‐day and between‐day precision for the tested concentration levels were less than 14.3% and the mean recoveries obtained from the spiked samples were ranged between 87.5 and 113.9%. The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and low limit of detection of the analyte.  相似文献   

3.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

4.
In this study, a hydrophilic deep eutectic solvent was synthesized as a carrier and disperser of magnetic nanoparticles based on ferrofluid and used to develop the dispersive micro‐solid‐phase extraction method. Ethylene glycol/tetramethylammonium chloride deep eutectic solvent and SiO2@Fe3O4 were used to provide the highly stable ferrofluid with strong sorbing properties without any additional stabilizer, which was employed to extract and determine morin in apple and grape juices, diluted and acidic extract of dried onion, and green tea infusion samples. The dispersibility of SiO2@Fe3O4 and prevention of its aggregation in the sample solution were improved using the deep eutectic solvent‐based ferrofluid. Also, it facilitated the fast injection of sorbent into the sample solution that led to an increase of the contact surface between the sorbent and analyte, and reduction of the extraction time and consumption of the sorbent. The important experimental parameters influencing the extraction efficiency of morin were examined. Under the optimal conditions, a linear calibration curve was obtained in the range of 3–500 µg/L with a determination coefficient of 0.9994. The limits of detection and quantification were of 0.91 and 2.98 µg/L, respectively. While an extraction recovery of 97.7% with relative standard deviation of 3.8% (interday) was obtained via three replicated measurements on a 30 µg/L of morin standard solution, the enrichment factor was 39.1. Finally, this method was successfully used to extract and preconcentrate morin in various samples, followed with their determination by high‐performance liquid chromatography with ultraviolet detection.  相似文献   

5.
A novel approach is presented to determine four bisphenols in water and urine samples, employing magnetic dispersive solid‐phase extraction combined with liquid chromatography and diode array detection. A modified zeolite‐based magnetic composite was used as an efficient sorbent, combining the advantages of magnetic materials with the remarkable properties of zeolites. A multivariate optimization design was employed to optimize some experimental factors affecting magnetic dispersive solid‐phase extraction. The method was evaluated under optimized conditions (i.e., amount of sorbent, 50 mg; sample pH, unadjusted; NaCl concentration, 1.25%; extraction and elution time, 2 min; eluent solvent, ethanol; eluent solvent volume, 400 µL), obtaining good linearity with correlation coefficients ranging between 0.995 and 0.999 (N = 5) (from 2 to 250 µg/L for bisphenol A, bisphenol AP, and bisphenol P and from 5 to 250 µg/L for bisphenol AF). Method repeatability was assessed obtaining coefficients of variation between 3 and 11% (n = 6). Finally, the method was applied to spiked real samples, obtaining for water samples relative recoveries between 83 and 105%, and for urine samples between 81 and 108% for bisphenol A, bisphenol AP, and bisphenol AF, and between 47 and 59% for bisphenol P.  相似文献   

6.
An on‐line, fast, simple, selective, and sensitive method has been developed for the determination of three herbicides belonging to the following families: triazines (atrazine), chloroacetamide (alachlor), and phenoxy (2,4‐dichlorophenoxyacetic acid) in water samples. The method involves an in‐syringe magnetic stirring‐assisted dispersive liquid–liquid microextraction along with simultaneous silylation prior to their determination by gas chromatography with mass spectrometry. Extraction, derivatization, and preconcentration have been simultaneously performed using acetone as dispersive solvent, N‐methyl‐Ntert‐butyldimethylsilyltrifluoroacetamide as derivatization agent and trichloroethylene as extraction solvent. After stirring for 180 s, the sedimented phase was transferred to a rotary micro‐volume injection valve (3 μL) and introduced by an air stream into gas chromatograph with mass spectrometry detector. Recovery and enrichment factors were 87.2–111.2% and 7.4–10.4, respectively. Relative standard deviations were in the ranges of 6.6–7.4 for intraday and 9.2–9.6 for interday precision. The detection limits were in the range of 0.045–0.03 μg/L, and good linearity was observed up to 200 μg/L, with R2 ranging between 0.9905 and 0.9964. The developed method was satisfactorily applied to assess the occurrence of the studied herbicides in groundwater samples. The recovery test was also performed with values between 77 and 117%.  相似文献   

7.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

8.
A new method named graphene‐coated magnetic‐sheet solid‐phase extraction based on a magnetic three‐dimensional graphene sorbent was developed for the extraction of aflatoxins prior to high‐performance liquid chromatography with fluorescence detection. The use of a perforated magnetic‐sheet for fixing the magnetic nanoparticles is a new feature of the method. Hence, the adsorbent particles can be separated from sample solution without using an external magnetic field. This made the procedure very simple and easy to operate so that all steps of the extraction process (sample loading, washing, and desorption) were carried out continuously using two lab‐made syringe pumps. The factors affecting the performance of extraction procedure such as the extraction solvent, adsorbent dose, sample loading flow rate, ionic strength, pH, and desorption parameters were investigated and optimized. Under the optimal conditions, the obtained enrichment factors and limits of detection were in the range of 205–236 and 0.09–0.15 μg/kg, respectively. The relative standard deviations were <3.4 and 7.5% for the intraday (= 6) and interday (= 4) precisions, respectively. The developed method was successfully applied to determine aflatoxins B1, B2, G1, and G2 in different soy‐based food samples.  相似文献   

9.
An approach involving ion‐pair switchable‐hydrophilicity solvent‐based homogeneous liquid–liquid microextraction coupled to high‐performance liquid chromatography has been applied for the preconcentration and separation of paraquat in a real sample. A mixture of triethylamine and water was used as the switchable‐hydrophilicity solvent. The pH was regulated using carbon dioxide; hence the ratio of the ionized and non‐ionized form of triethylamine could control the optimum conditions. Sodium dodecyl sulfate was utilized as an ion‐pairing agent. The ion‐associate complex formed between the cationic paraquat and sodium dodecyl sulfate was extracted into triethylamine. The separation of the two phases was carried out by the addition of sodium hydroxide, which changed the ionization state of triethylamine. The effects of some important parameters on the extraction recovery were investigated. Under the optimum conditions (500 μL of the extraction solvent, 1 mg sodium dodecyl sulfate, 2.0 mL of 10 mol/L sodium hydroxide, and pH 4), the limit of detection and the limit of quantification were 0.2 and 0.5 μg/L, respectively, with preconcentration factor of 74. The precision (RSD, n  = 10) was  <5%. The recovery of the analyte in environmental and biological samples was in the range of 90.0–92.3%.  相似文献   

10.
In this work, a simple, facile, and sensitive magnetic solid‐phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high‐performance liquid chromatography analysis. Gold‐modified Fe3O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8–500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20–0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.  相似文献   

11.
A novel aptamer‐modified magnetic mesoporous carbon was prepared to develop a specific and sensitive magnetic solid‐phase extraction method through combination with ultra‐high performance liquid chromatography‐tandem mass spectrometry for the analysis chloramphenicol in complex samples. More specifically, the chloramphenicol aptamer‐modified Mg/Al layered double hydroxide magnetic mesoporous carbon was employed as a novel magnetic solid‐phase extraction sorbent for analyte enrichment and sample clean‐up. The extraction solvent, extraction time, desorption solvent, and desorption time were investigated. It was found that the mesoporous structure and aptamer‐based affinity interactions resulted in acceptable selective recognition and a good chemical stability toward trace amounts of chloramphenicol. Upon combination with the ultra‐high performance liquid chromatography‐tandem mass spectrometry technique, a specific and sensitive recognition method was developed with a low limit of detection (0.94 pmol/L, S/N = 3) for chloramphenicol analysis. The developed method was successfully employed for the determination of chloramphenicol in complex serum, milk powders, fish and chicken samples, giving recoveries of 87.0‐107% with relative standard deviations of 3.1‐9.7%.  相似文献   

12.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

13.
Magnetic dispersive solid‐phase extraction followed by dispersive liquid?liquid microextraction coupled with gas chromatography/mass spectrometry was applied for the quantitative analysis of phenazopyridine in urinary samples. Magnetic dispersive solid‐phase extraction was carried out using magnetic graphene oxide nanoparticles modified by poly(thiophene‐pyrrole) copolymer. The eluting solvent of this step was used as the disperser solvent for the dispersive liquid?liquid microextraction procedure. To reach the maximum efficiency of the method, effective parameters including sorbent amount, adsorption time, type and volume of disperser and extraction solvents, pH of the sample solution, and ionic strength as well as desorption time, and approach were optimized, separately. Characterization of the synthesized sorbent was studied by utilizing infrared spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray analysis. Calibration curve was linear in the range of 0.5?250 ng/mL (R2 = 0.9988) with limits of detection and quantification of 0.1 and 0.5 ng/mL, respectively. Intra‐ and interday precisions (RSD%, n = 3) of the method were in the range of 4.6?5.4% and 4.0?5.5%, respectively, at three different concentration levels. Under the optimal condition, this method was successfully applied for the determination of phenazopyridine in human urine samples. The relative recoveries were obtained in the range of 85.0?89.0%.  相似文献   

14.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

15.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

16.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

17.
A novel polystyrene/pyridine composite nanofiber was synthesized and utilized as the sorbent material for the solid‐phase extraction of bisphenol A and five common phthalate esters in milk. The method of extraction integrated extraction and preconcentration of target analytes into a single step. Bisphenol A and five common phthalate esters were selected as target compounds for the development and evaluation of the method. The effects of operating parameters for nanofiber‐based solid‐phase extraction, such as selection and amount of sorbent, the volume fraction of perchlorate (precipitate protein), desorption solvent, volume of desorption solvent, and effect of salt addition were optimized. Under optimal conditions, higher extraction recoveries (89.6–118.0%) of the six compounds in milk spiked at three levels were obtained, and the satisfied relative standard deviation were ranged from 0.6 to 10.9%. The detection limits and quantification limits of the method ranged from 0.01 to 0.06 μg/L and 0.05 to 0.53 μg/L, respectively. Matrix effects were also verified and well controlled in the range of 91.3–109.3%. The new method gave better performance metrics than Chinese standard method and other published methods. Thus, the proposed method may be applied to the analysis of the phthalate esters and bisphenol A in complex matrixes.  相似文献   

18.
In this work, magnetic nanoparticles (Fe3O4) were prepared by simple co‐precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate and 3‐aminopropyl triethylenesilane. The properties of the particles were characterized by FTIR spectroscopy X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. The SiO2‐NH2@Fe3O4 particles were successfully applied to simultaneously enrich and separate diclofenac from water, urine, and plasma samples. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid some of the time‐consuming experimental procedures related to the traditional solid phase extraction. The main parameters affecting extraction and desorption efficiency such as pH, amount of SiO2‐NH2@Fe3O4, volume of desorption solvent, and extraction time were screened. The significant variables were optimized by using central composite design. At optimum conditions values of variables set as pH = 4, 10 mg SiO2‐NH2@Fe3O4, 0.5 mL methanol, and 15 min extraction time and then the extracted diclofenac were injected to HPLC for analysis. The linear response (r> 0.9992) was obtained in the range of 0.004–15 µg/mL with detection limit 0.0012 µg/mL and extraction recovery was in the range of 92–96% with RSD < 5% (n = 6).  相似文献   

19.
In this study, the viability of two membrane‐based microextraction techniques for the determination of endocrine disruptors by high‐performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid–liquid extraction and hollow‐fiber‐supported dispersive liquid–liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2‐ethylhexyl‐4‐methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid–liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1‐octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5–4.6 μg/L and the limits of quantification were 2–16 μg/L. The analyte relative recoveries were 67–116%, and the relative standard deviations were less than 15.5%.  相似文献   

20.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号