首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suan‐Zao‐Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan‐Zao‐Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in‐depth pharmacological research of Suan‐Zao‐Ren granule and provided a chemical basis for its rational.  相似文献   

2.
Suan‐Zao‐Ren decoction has been used to treat insomnia for many years. In this work, a rapid and sensitive ultra‐fast liquid chromatography with tandem mass spectrometry method was first developed and fully validated for the simultaneous quantification of seven main active components, spinosin, mangiferin, neomangiferin, ferulic acid, liquiritin, isoliquiritin, and liquiritin apioside in rat plasma. The method was also successfully applied to compare the pharmacokinetics of these active ingredients after oral administration of Suan‐Zao‐Ren decoction and Suan‐Zao‐Ren granule. The separation was achieved on a Venusil MP C18 column and the detection was conducted by the multiple reaction monitoring mode using negative ion mode. Each calibration curve had good linearity over a wide concentration range. The precision of intra‐ and interday were all within 15%, and the extraction recoveries at different analyte concentrations were all above 82.0%. The established method was successfully applied to compare the pharmacokinetic profiles of the analytes between Suan‐Zao‐Ren decoction and Suan‐Zao‐Ren granule groups. The results indicated that all the analytes had similar mean concentration‐time curves trend between two groups. No significant differences were observed in pharmacokinetic parameters of mangiferin, while the others had significant differences.  相似文献   

3.
Corn silk is a well‐known traditional Chinese medicine that has been widely used for its antidiabetic, antioxidant, antihyperlipidemic, and other effects in China for thousands of years. Numerous studies have revealed that corn silk contains multiple bioactive constituents that are beneficial for human health. However, the constituents of corn silk in vivo remain ambiguous. In this study, high‐throughput ultra‐high‐performance liquid chromatography combined with quadrupole time‐of‐flight mass spectrometry technology using multivariate statistical analysis was established to systematically investigate the constituents migrating into blood from corn silk aqueous extract. As a result, 76 compounds were identified, including caffeic acid and ten of its derivatives, (E)‐p‐coumaric acid and two of its derivatives, ferulic acid and four of its derivatives, and five flavones. Among the identified constituents, 21 constituents, including nine prototype components and 12 metabolites derived from eight components, were characterized in sequence. Based on the significance of the results, the applied approach was powerful for the accurate determination and rapid screening of bioactive components from corn silk aqueous extract. The obtained results are valuable for the in‐depth understanding and further pharmacological study of corn silk aqueous extract.  相似文献   

4.
5.
Er‐Zhi‐Pill, which consists of Ligustri lucidi fructus and Ecliptae prostratae herba , is a classical traditional Chinese medicinal formulation widely used as a liver‐nourishing and kidney‐enriching tonic. To identify the bioactive ingredients of Er‐Zhi‐Pill and characterize the variation of chemical constituents between co‐decoction and mix of individually decocted L. lucidi fructus and E. prostratae herba , a novel metabolomics approach based on ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry in both positive and negative ion modes, was established to comprehensively analyze chemical constituents and probe distinguishable chemical markers. In total, 68 constituents were unambiguously or tentatively identified through alignment of accurate molecular weights within an error margin of 5 ppm, elemental composition and fragmentation characteristics, including eight constituents, which were confirmed by comparing to reference standards. Furthermore, principal component analysis and partial least squares discriminant analysis using Simca‐p+ 12.0 software were applied to investigate chemical differences between formulations obtained by co‐decoction and a mixture of individual decoctions. Global chemical differences were found in samples of two different decoction methods, and 16 components, including salidroside, specneuzhenide and wedelolactone, contributed most to the observed differences. This study provides a basic chemical profile for the quality control and further mechanism research of Er‐Zhi‐Pill.  相似文献   

6.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Bilobetin, a natural compound extracted from Ginkgo biloba, has various pharmacological activities such as antioxidation, anticancer, antibacterial, antifungal, anti‐inflammatory, antiviral, and promoting osteoblast differentiation. However, few studies have been conducted and there are no reports on its metabolites owing to its low content in nature. In addition, it has been reported to have potential liver and kidney toxicity. Therefore, this study aimed to identify the metabolites of bilobetin in vitro and in vivo. Bilobetin was incubated with liver microsomes to determine metabolites in vitro, and faeces and urine were collected after oral administration to rats to determine metabolites in vivo. After the samples were processed, they were measured using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 21 and 9 metabolites were detected in vivo and in vitro, respectively. Demethylation, demethylation and loss of water, demethylation and hydrogenation, demethylation and glycine conjugation, oxidation, methylation, oxidation and methylation, and hydrogenation were the main metabolic pathways. This study is the first to identify the metabolites of bilobetin and provides a theoretical foundation for the safe use of bilobetin in clinical application and the development of new drugs.  相似文献   

8.
A metabolomics method based on ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry was developed to evaluate the influence of processing times on the quality of raw and processed Polygoni Multiflora Radix . Principal component analysis and partial least‐squares discriminant analysis was used to screen the potential maker metabolites that were contributed to the quality changes. Then these marker metabolites were selected as variables in Fisher's discriminant analysis to establish the models that were used to distinguish the raw and processed Polygoni Multiflora Radix in the markets. Additionally, 36 compounds were identified. Twelve raw Polygoni Multiflora Radix samples and 23 processed Polygoni Multiflora Radix samples were distinguished. The results showed that the 12 raw Polygoni Multiflora Radix samples belonged to the group of processing time of 0 h, and two processed Polygoni Multiflora Radix samples were part of the group of processing times of 4 h, 12 samples belonged to group of processing times of 8 to 16 h, and nine samples were the group of processing times of 24 to 48 h. The results demonstrated that the method could provide scientific support for the processing standardization of Polygoni Multiflora Radix .  相似文献   

9.
The fruits of Lycium ruthenicum Murr. have long been used in folk medicine. Nevertheless, detailed information related to its phenolic composition and its quality control remains scarce. In this study, a simple and reproducible method, based on high‐performance liquid chromatography combined with chemometrics, was developed to authenticate 18 samples of L. ruthenicum Murr. collected from different parts of China through fingerprint analysis. The main peaks were identified by quadrupole time‐of‐flight electrospray ionization mass spectrometry. Four phenolics were quantified, and the most abundant phenolic compound in almost all samples was kukoamine A. Hierarchical cluster analysis and principal component analysis were applied to classify these samples. Also, a total of 26 compounds, which were mainly phenolic compounds and anthocyanins, were identified or tentatively identified based on the available literature and standard references. Among these, 16 were reported for the first time in the extract. The results showed that there was no significant difference between L. ruthenicum fruits from different provinces in terms of chemical composition. Also, the fingerprint together with chemometric analyses and quadrupole time‐of‐flight electrospray ionization mass spectrometry are promising methods for evaluating the quality consistency, identification, and comprehensive evaluation of L. ruthenicum .  相似文献   

10.
11.
Xiaojin Capsule, a classic traditional Chinese medicine formula, has been used to treat mammary cancer, thyroid nodules, and hyperplasia of the mammary glands. However, its systematic chemical information remained unclear, which hindered the interpretation of the pharmacology and the mechanism of action of this drug. In this research, an ultra high performance liquid chromatography coupled with a quadrupole time‐of‐flight mass spectrometry method was developed to identify the complicated components and metabolites of Xiaojin Capsule. Two acquisition modes, including the MSEnergy mode and fast data directed acquisition mode, were utilized for chemical profiling. As a result, 156 compounds were unambiguously or tentatively identified by comparing their retention times and mass spectrometry data with those of reference standards or literature. After the oral administration of Xiaojin Capsule, 53 constituents, including 24 prototype compounds and 29 metabolites, were detected in rat plasma. The obtained results were beneficial for a better understanding of the therapeutic basis of Xiaojin Capsule. A high‐resolution and efficient separation method was firstly established for systematically characterizing the compounds of Xiaojin Capsule and the associated metabolites in vivo, which could be helpful for quality control and pharmacokinetic studies of this medicine.  相似文献   

12.
Jiao‐Tai‐Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao‐Tai‐Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2‐hydroxycinnamic acid, 3‐hydroxycinnamic acid, 4‐hydroxycinnamic acid, and 2‐methoxy cinnamic acid after oral administration of Jiao‐Tai‐Wan. The prototypes from Jiao‐Tai‐Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao‐Tai‐Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao‐Tai‐Wan.  相似文献   

13.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

14.
The Wen‐Jing decoction, a traditional Chinese medicine formula, has been used as a blood‐activating and stasis‐eliminating drug to treat gynaecological syndromes, such as dysmenorrhea, amenorrhea, and menstrual disorders. However, its pharmacodynamic material basis and mechanism of action have not been thoroughly elucidated to date. The goal of this study was to characterize and identify multiple constituents and metabolites in Wen‐Jing decoction. An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was established and validated in the present study for the first time. A total of 101 compounds, including 11 monoterpene glycosides, 19 flavonoids, 49 triterpene saponins, 5 phthalides, 3 phytoecdysones, and 14 others, were unambiguously or tentatively characterized by comparing their retention times and MS data with reference standards or with data reported in the literature. After oral administration of Wen‐Jing decoction, 27 compounds, including nine prototype compounds and 18 metabolites were detected in rat plasma. Thus, the ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was found to be efficient for in‐depth structural elucidation of chemical compounds in complex matrices of herbal medicines, which will provide useful chemical information for quality control and mechanism‐of‐action research.  相似文献   

15.
Tamoxifen (TMX) is a nonsteroidal estrogen antagonist drug used for the treatment of breast cancer. It is also included in the list of banned substances of the World Anti Doping Agency (WADA) prohibited in and out of competition. In this work, the excretion of urinary metabolites of TMX after a single therapeutic dose administration in rats has been studied using ultra‐high‐performance liquid chromatography electrospray time‐of‐flight mass spectrometry (UHPLC‐TOFMS). A systematic strategy based on the search of typical biotransformations that a xenobiotic can undergo in living organisms, based on their corresponding molecular formula modification and accurate mass shifts, was applied for the identification of TMX metabolites. Prior to UHPLC‐TOFMS analyses, a solid‐phase extraction step with polymeric cartridges was applied to urine samples. Up to 38 TMX metabolites were detected. Additional collision induced dissociation (CID) MS/MS fragmentation was performed using UHPLC‐QTOFMS. Compared with recent previous studies in human urine and plasma, new metabolites have been reported for the first time in urine. Metabolites identified in rat urine include the oxygen addition, owing to different possibilities for the hydroxylation of the rings in different positions (m/z 388.2271), the incorporation of two oxygen atoms (m/z 404.2220) (including dihydroxylated derivatives or alternatives such as epoxidation plus hydroxylation or N‐oxidation and hydroxylation), epoxide formation or hydroxylation and dehydrogenation [m/z 386.2114 (+O –H2)], hydroxylation of the ring accompanied by N‐desmethylation (m/z 374.2115), combined hydroxylation and methoxylation (m/z 418.2377), desaturated TMX derivate (m/z 370.2165) and its N‐desmethylated derivate (m/z 356.2009), the two latter modifications not previously being reported in urine. These findings confirm the usefulness of the proposed approach based on UHPLC‐TOFMS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Schisandra chinensis lignans are the main active components of the traditional Chinese medicine Schisandra chinensis in East Asia. At present, there are more and more medicines and health foods in which the total S. chinensis lignans extracts are considered as the main active components, but little research has been done on the active components of S. chinensis lignans in the blood and main target organs. In this study, the components of S. chinensis lignans in the blood, liver and brain tissues of rats at different time points after the intragastrical administration of S. chinensis lignans were determined by a metabolomic method based on high‐performance liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry spectrometry. Twelve Schisandra chinensis lignans and 15 metabolites in the blood, liver, and brain of rats were identified. The results showed that the main metabolic ways of S. chinensis lignans in rats were hydroxylation, demethylation, and demethylation‐hydroxylation, and some of them might undergo demethylation, dehydrogenation, epoxidation, and elimination reaction. The time‐dose characteristics of S. chinensis lignans and their metabolites in the blood and target organs were analyzed, which may be helpful to elucidate the active substances that really exert the pharmacodynamic effects of S. chinensis lignans in organisms.  相似文献   

17.
Ligustrazine was the active ingredient of the traditional Chinese medicine Chuanxiong Rhizoma. However, the content of ligustrazine is very low. We proposed a hypothesis that ligustrazine was produced by the mutual effects between endophytic Bacillus subtilis and the Ligusticum chuanxiong Hort. This study aimed to explore whether the endophytic B. subtilis LB5 could make use of Chuanxiong Rhizoma fermentation matrix to produce ligustrazine and clarify the mechanisms of action preliminarily. Ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry analysis showed the content of ligustrazine in Chuanxiong Rhizoma was below the detection limit (0.1 ng/mL), while B. subtilis LB5 produced ligustrazine at the yield of 1.0268 mg/mL in the Chuanxiong Rhizoma‐ammonium sulfate fermentation medium. In the fermented matrix, the reducing sugar had a significant reduction from 12.034 to 2.424 mg/mL, and rough protein content increased from 2.239 to 4.361 mg/mL. Acetoin, the biosynthetic precursor of ligustrazine, was generated in the Chuanxiong Rhizoma‐Ammonium sulfate (151.2 mg/mL) fermentation medium. This result showed that the endophytic bacteria B. subtilis LB5 metabolized Chuanxiong Rhizoma via secreted protein to consume the sugar in Chuanxiong Rhizoma to produce a considerable amount of ligustrazine. Collectively, our preliminary research suggested that ligustrazine was the interaction product of endophyte, but not the secondary metabolite of Chuanxiong Rhizoma itself.  相似文献   

18.
Compared with chemical drugs, it is a huge challenge to identify active ingredients of multicomponent traditional Chinese medicine (TCM). For most TCMs, metabolism investigation of absorbed constituents is a feasible way to clarify the active material basis. Although Andrographis paniculata (AP) has been extensively researched by domestic and foreign scholars, its metabolism has seldom been fully addressed to date. In this paper, high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry was applied to analysis and characterization of AP metabolism in rat urine and feces samples after oral administration of ethanol extract. The differences in metabolites and metabolic pathways between the two biological samples were further compared. The chemical structures of 20 components were tentatively identified from drug‐treated biological samples, including six prototype components and 14 metabolites, which underwent such main metabolic pathways as hydrolyzation, hydrogenation, dehydroxylation, deoxygenation, methylation, glucuronidation, sulfonation and sulfation. Two co‐existing components were found in urine and feces samples, suggesting that some ingredients' metabolic processes were not unique. This study provides a comprehensive report on the metabolism of AP in rats, which will be helpful for understanding its mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (LC‐QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data‐dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC‐QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans , but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The chemical constituents of the Siraitia grosvenorii leaf extract were studied. Firstly, high‐speed counter‐current chromatography was applied to the one‐step separation of four compounds from S. grosvenorii leaf extract with the solvent system composed of 0.01% acetic acid water/n‐butanol/n‐hexane/methanol (5:3:1:1, v/v/v/v). In this work, 270 mg of crude sample yielded four compounds, a new kaempferol O‐glycoside derivative, kaempferol 3‐O‐α‐L‐[4‐O‐(4‐carboxy‐3‐hydroxy‐3‐methylbutanoyl)]‐rhamnopyranoside‐7‐OαL‐rhamnopyranoside, named kaempferitrin A (2.1 mg, 90%), and three known compounds, grosvenorine (3.4 mg, 93%), kaempferitrin (14.4 mg, 99%) and afzelin (4 mg, 98%), and the structures of these compounds were identified by NMR spectroscopy and mass spectrometry. Then, ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry was used to illustrate the dominant flavonoids in S. grosvenorii leaf extract. 34 flavonoids including 19 kaempferol O‐glycosides, 4 quercetin O‐glycosides, 6 flavanone derivatives, and 5 polymethoxyflavones, were accurately or tentatively identified by carefully comparing their retention times, UV data, precise masses, the typical fragments of the standards and literature data. Most of these compounds were reported for the first time. This study establishes a foundation for the further development and utilization of S. grosvenorii leaves in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号