首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium metal is a promising anode, but uneven Na deposition with a dendrite growth seriously impedes its application. Herein, a fibrous hydroxylated MXene/carbon nanotubes (h-Ti3C2/CNTs) composite is designed as a scaffold for dendrite-free Na metal electrodes. This composite displays fast Na+/electron transport kinetics and good thermal conductivity and mechanical properties. The h-Ti3C2 contains abundant sodiophilic functional groups, which play a significant role in inducing homogeneous nucleation of Na. Meanwhile, CNTs provide high tensile strength and ease of film-forming. As a result, h-Ti3C2/CNTs exhibit a high average Coulombic efficiency of 99.2 % and no dendrite after 1000 cycles. The h-Ti3C2/CNTs/Na based symmetric cells show a long lifespan over 4000 h at 1.0 mA cm−2 with a capacity of 1.0 mAh cm−2. Furthermore, Na-O2 batteries with a h-Ti3C2/CNTs/Na anode exhibit a low potential gap of 0.11 V after an initial 70 cycles.  相似文献   

2.
Replacing the commonly used nonaqueous liquid electrolytes in rechargeable sodium batteries with polymer solid electrolytes is expected to provide new opportunities to develop safer batteries with higher energy densities. However, this poses challenges related to the interface between the Na‐metal anode and polymer electrolytes. Driven by systematically investigating the interface properties, an improved interface is established between a composite Na/C metal anode and electrolyte. The observed chemical bonding between carbon matrix of anode with solid polymer electrolyte, prevents delamination, and leads to more homogeneous plating and stripping, which reduces/suppresses dendrite formation. Full solid‐state polymer Na‐metal batteries, using a high mass loaded Na3V2(PO4)3 cathode, exhibit ultrahigh capacity retention of more than 92 % after 2 000 cycles and over 80 % after 5 000 cycles, as well as the outstanding rate capability.  相似文献   

3.
Sodium metal is an ideal anode material for metal rechargeable batteries, owing to its high theoretical capacity (1166 mAh g?1), low cost, and earth‐abundance. However, the dendritic growth upon Na plating, stemming from unstable solid electrolyte interphase (SEI) film, is a major and most notable problem. Here, a sodium benzenedithiolate (PhS2Na2)‐rich protection layer is synthesized in situ on sodium by a facile method that effectively prevents dendrite growth in the carbonate electrolyte, leading to stabilized sodium metal electrodeposition for 400 cycles (800 h) of repeated plating/stripping at a current density of 1 mA cm?2. The organic salt, PhS2Na2, is found to be a critical component in the protection layer. This finding opens up a new and promising avenue, based on organic sodium slats, to stabilize sodium metals with a protection layer.  相似文献   

4.
Sodium metal is an attractive anode for next‐generation energy storage systems owing to its high specific capacity, low cost, and high abundance. Nevertheless, uncontrolled Na dendrite growth caused by the formation of unstable solid electrolyte interphase (SEI) leads to poor cycling performance and severe safety concerns. Sodium polysulfide (Na2S6) alone is revealed to serve as a positive additive or pre‐passivation agent in ether electrolyte to improve the long‐term stability and reversibility of the Na anode, while Na2S6‐NaNO3 as co‐additive has an adverse effect, contrary to the prior findings in the lithium anode system. A superior cycling behavior of Na anode is first demonstrated at a current density up to 10 mA cm?2 and a capacity up to 5 mAh cm?2 over 100 cycles. As a proof of concept, a high‐capacity Na‐S battery was prepared by pre‐passivating the Na anode with Na2S6. This study gives insights into understanding the differences between Li and Na systems.  相似文献   

5.
Sodium‐ion batteries are similar in concept and function to lithium‐ion batteries, but their development and commercialization lag far behind. One obstacle is the lack of a standard reference electrode. Unlike Li foil reference electrodes, sodium is not easily processable or moldable and it deforms easily. Herein we fabricate a processable and moldable composite Na metal anode made from Na and reduced graphene oxide (r‐GO). With only 4.5 % percent r‐GO, the composite anodes had improved hardness, strength, and stability to corrosion compared to Na metal, and can be engineered to various shapes and sizes. The plating/stripping cycling of the composite anode was significantly extended in both ether and carbonate electrolytes giving less dendrite formation. We used the composite anode in both Na‐O2 and Na‐Na3V2(PO4)3 full cells.  相似文献   

6.
Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries.  相似文献   

7.
Lithium metal has been considered as the most promising anode electrode for substantially improving the energy density of next‐generation energy storage devices. However, uncontrollable lithium dendrite growth, an unstable solid electrolyte interface (SEI), and infinite volume variation severely shortens its service lifespan and causes safety hazards, thus hindering the practical application of lithium metal electrodes. Here, carbon fiber film (CFF) modified by lithiophilic Co3O4 nanowires (denoted as Co3O4 Nws) was proposed as a matrix for prestoring lithium metal through a thermal infusion method. The homogeneous needle‐like Co3O4 nanowires can effectively promote molten lithium to infiltrate into the CFF skeleton. The post‐formed Co?Li2O nanowires produced by the reaction of Co3O4 Nws and molten lithium can homogeneously distribute lithium ions flux and efficaciously increase the adsorption energy with lithium ions proved by density functional theory (DFT) calculation, boosting a uniform lithium deposition without dendrite growth. Therefore, the obtained composite anode (denoted as CFF/Co?Li2O@Li) exhibits superior electrochemical performance with high stripping/plating capacities of 3 mAh cm?2 and 5 mAh cm?2 over long‐term cycles in symmetrical batteries. Moreover, in comparison with bare lithium anode, superior Coulombic efficiencies coupled with copper collector and full battery behaviors paired with LiFePO4 cathode are achieved when CFF/Co?Li2O@Li composite anode was employed.  相似文献   

8.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

9.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

10.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

11.
Layered transition metal oxides NaxMO2 (M=transition metal) with P2 or O3 structure have attracted attention in sodium‐ion batteries (NIBs). A universal law is found to distinguish structural competition between P2 and O3 types based on the ratio of interlayer distances of the alkali metal layer d(O‐Na‐O) and transition‐metal layer d(O‐M‐O). The ratio of about 1.62 can be used as an indicator. O3‐type Na0.66Mg0.34Ti0.66O2 oxide is prepared as a stable anode for NIBs, in which the low Na‐content (ca. 0.66) usually undergoes a P2‐type structure with respect to NaxMO2. This material delivers an available capacity of about 98 mAh g?1 within a voltage range of 0.4–2.0 V and exhibits a better cycling stability (ca. 94.2 % of capacity retention after 128 cycles). In situ X‐ray diffraction reveals a single‐phase reaction in the discharge–charge process, which is different from the common phase transitions reported in O3‐type electrodes, ensuring long‐term cycling stability.  相似文献   

12.
The ionic conductivity and small size of the hydrogen ion make it an ideal charge carrier for hydrogen‐ion energy storage (HES); however, high‐voltage two‐electrode configurations are difficult to construct as the result of the lack of efficient cathodic energy storage. Herein, the high potential fast anionic redox at the cathode of reduced graphene oxide (rGO) was applied by introducing redox additive electrolytes. By coupling the storing hydrogen ion in the Ti3C2Tx at the anode, a HES with a voltage of 1.8 V and a plateau voltage at 1.2 V was constructed. Compared with 2.2 Wh kg?1 for the low‐voltage Ti3C2Tx//Ti3C2Tx, the specific energy of asymmetric rGO//Ti3C2Tx reaches 34.4 Wh kg?1. Furthermore, it possesses an energy density of 23.7 Wh kg?1 at high power density of 22.5 kW kg?1. Thus, this study provides a novel guideline for constructing high‐voltage fast HES full cells.  相似文献   

13.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

14.
《中国化学快报》2021,32(9):2899-2903
Zinc metal has aroused increasing interest as anode material of Zn-based batteries for their energy storage application. However, the uneven Zn stripping/plating processes induce severe dendrite growth, leading to low Coulombic efficiency and safety hazards. Herein, a surface-tuned two-dimensional (2D) MXene Ti3C2Tx scaffold as a robust skeleton is developed to facilitate the uniform Zn stripping/plating. The Ti3C2Tx with high electrical conductivity and unique structure provides fast ionic-transport paths, promising even Zn2+ stripping/plating processes. With suppressed Zn dendrite growth and uniform nucleation, the proposed 2D Ti3C2Tx scaffold for Zn metal anode delivers a low voltage hysteresis of 63 mV and long lifespan over 280 h. This surface-tuned engineering strategy demonstrates the potential application of Zn anode with MXene skeleton for next-generation Zn-based batteries.  相似文献   

15.
Classical organic anode materials for Na‐ion batteries are mostly based on conjugated carboxylate compounds, which can stabilize added electrons by the double‐bond reformation mechanism. Now, 1,4‐cyclohexanedicarboxylic acid (C8H12O4, CHDA) with a non‐conjugated ring (?C6H10?) connected with carboxylates is shown to undergo electrochemical reactions with two Na ions, delivering a high charge specific capacity of 284 mA h g?1 (249 mA h g?1 after 100 cycles), and good rate performance. First‐principles calculations indicate that hydrogen‐transfer‐mediated orbital conversion from antibonding π* to bonding σ stabilize two added electrons, and reactive intermediate with unpaired electron is suppressed by localization of σ‐bonds and steric hindrance. An advantage of CHDA as an anode material is good reversibility and relatively constant voltage. A large variety of organic non‐conjugated compounds are predicted to be promising anode materials for sodium‐ion batteries.  相似文献   

16.
Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next‐generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic–inorganic hybrid protection layer (Nafion‐Zn‐X) is developed by complexing inorganic Zn‐X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic–inorganic interface. This unique organic–inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion‐Zn‐X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm?2), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.  相似文献   

17.
Recently, there has been great interest in developing advanced sodium‐ion batteries for large‐scale application. Most efforts have concentrated on the search for high‐performance electrode materials only in sodium half‐cells. Research on sodium full cells for practical application has encountered many problems, such as insufficient cycles with rapid capacity decay, low safety, and low operating voltage. Herein, we present a layered P2‐Na0.66Ni0.17Co0.17Ti0.66O2, as both an anode (ca. 0.69 V versus Na+/Na) and as a high‐voltage cathode (ca. 3.74 V versus Na+/Na). The full cell based on this bipolar electrode exhibits well‐defined voltage plateaus near 3.10 V, which is the highest average voltage in the symmetric cells. It also shows the longest cycle life (75.9 % capacity retention after 1000 cycles) in all sodium full cells, a usable capacity of 92 mAh g?1, and superior rate capability (65 mAh g?1 at a high rate of 2C).  相似文献   

18.
Solid‐state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well‐matched Li metal/solid‐state electrolyte (SSE) interface remains challenging. Herein, we report g‐C3N4 as a new interface enabler. We discover that introducing g‐C3N4 into Li metal can not only convert the Li metal/garnet‐type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li‐C3N4|SSE|Li‐C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm?2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm?2).  相似文献   

19.
The poor cycling stability resulting from the large volume expansion caused by lithiation is a critical issue for Si‐based anodes. Herein, we report for the first time of a new yolk–shell structured high tap density composite made of a carbon‐coated rigid SiO2 outer shell to confine multiple Si NPs (yolks) and carbon nanotubes (CNTs) with embedded Fe2O3 nanoparticles (NPs). The high tap density achieved and superior conductivity can be attributed to the efficiently utilised inner void containing multiple Si yolks, Fe2O3 NPs, and CNTs Li+ storage materials, and the bridged spaces between the inner Si yolks and outer shell through a conductive CNTs “highway”. Half cells can achieve a high area capacity of 3.6 mAh cm?2 and 95 % reversible capacity retention after 450 cycles. The full cell constructed using a Li‐rich Li2V2O5 cathode can achieve a high reversible capacity of 260 mAh g?1 after 300 cycles.  相似文献   

20.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号