首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-assembly of inorganic nanoparticles into well-ordered structures in the absence of solvents is generally hindered by van der Waals forces, leading to random aggregates between them. To address the problem, we functionalized rigid rare-earth (RE) nanoparticles with a layer of flexible polymers by electrostatic complexation. Consequently, an ordered and solvent-free liquid crystal (LC) state of RE nanoparticles was realized. The RE nanomaterials including nanospheres, nanorods, nanodiscs, microprisms, and nanowires all show a typical nematic LC phase with one-dimensional orientational order, while their microstructures strongly depend on the particles’ shape and size. Interestingly, the solvent-free thermotropic LCs possess an extremely wide temperature range from −40 °C to 200 °C. The intrinsic ordering and fluidity endow anisotropic luminescence properties in the system of shearing-aligned RE LCs, offering potential applications in anisotropic optical micro-devices.  相似文献   

2.
Helical carbon and graphite films from helical poly(3,4‐ethylenedioxythiophene) (H‐PEDOT) films synthesized through electrochemical polymerization in a chiral nematic liquid‐crystal (N*‐LC) field are prepared. The microscope investigations showed that the H‐PEDOT film synthesized in the N*‐LC has large domains of one‐handed spiral morphology consisting of fibril bundles. The H‐PEDOT films exhibited distinct Cotton effects in circular dichroism spectra. The highly twisted N*‐LC with a helical pitch of smaller than 1 μm produced the H‐PEDOT film with a highly ordered morphology. The spiral morphologies with left‐ and right‐handed screws were observed for the carbon films prepared from the H‐PEDOT films at 800 °C and were well correlated with the textures and helical pitches of the N*‐LCs. The spiral morphologies of the precursors were also retained even in the graphite films prepared from the helical carbon films at 2600 °C.  相似文献   

3.
A series of poly[oxy(4‐n‐alkyl‐3,5‐benzoate)oxy‐1,4‐phenylenediacryloyl]s (PPDA‐CnBZ polymers) with high molecular weights was synthesized. These polymers exhibit excellent solubility in some common organic solvents and produce good quality films using conventional spin‐casting and drying processes. The polymers are thermally stable up to 357–362 °C in a nitrogen atmosphere; their glass transition temperatures are greater than 121 °C. The photoreactions and photoalignments of the polymers were investigated using ultraviolet‐visible and infrared spectroscopy, and their liquid crystal (LC) alignment properties were examined. The phenylenediacrylate (PDA) chromophores in the polyesters were found to mainly undergo photocyclization upon ultraviolet light irradiation. Irradiation of the polyester films with linearly polarized ultraviolet light (LPUVL) induces preferential orientation of the polymer main chains, while the unreacted PDA chromophores are aligned along the direction perpendicular to the electric vector of the LPUVL. All the films irradiated with LPUVL were found to align LCs in a direction perpendicular to the electric vector of the LPUVL. Moreover, these LC alignments persisted even on irradiated films annealed at temperatures up to 210 °C, which is much higher than the glass transition temperatures of the polyesters. These LC alignment characteristics are due to the anisotropic interactions of the LC molecules with the oriented polymer chains and with the unreacted PDA chromophores. LC alignments on the polyester film surfaces have homeotropic to homogeneous characteristics, depending on the length of the n‐alkyl side group, providing strong evidence that the n‐alkyl side groups of the polyesters play a critical role in determining the pretilt angles of the LCs. The LC pretilt angles were also found to be influenced by the thermal annealing history of the irradiated films. In summary, the excellent properties of the PPDA‐CnBZ polymers make them promising candidate materials for use as LC alignment layers in advanced LC display devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1322–1334, 2004  相似文献   

4.
An aromatic polyimide bearing photoreactive 4‐(2‐(4‐oxyethylenyloxyphenyl)vinyl)pyridine side groups was synthesized and characterized. The polymer is stable up to 300°C and soluble in organic solvents, giving thin films in good quality. When exposed to UV light, it reorients favorably with an angle of 98° with respect to the electric vector of linearly polarized UV light. UV‐exposed films align liquid‐crystals (LCs) homogeneously along the preferential orientation of the polymer chains on the surface. The pretilt angle of the LCs is 0.32–0.92°, depending on the exposure dose and annealing. LC alignment is retained up to 210°C. Based on the optical retardation behavior and spectroscopic measurements, a photoalignment mechanism is proposed.  相似文献   

5.
Characterisation of liquid crystals (LCs) as solvents is needed, to obtain the polarity and solvatochromic polarity parameters of these media. Polarity parameters demonstrate the effects of LC media on the photo-physical behaviour of solute molecules in an anisotropic medium. The practical limitations in determining solvent polarity scale parameters for LCs can overcome the overlapping absorption band of LCs and solvent-sensitive standard compounds or their insolubility in LCs. In this work, we report Kamlet–Abboud–Taft polarity functions of some nematic LCs in different temperatures and phases, isotropic and anisotropic, with the solvatochromic method, using the Reichardt's dye and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)-phenolate standard probe. In addition, a new azo and coumarin dye were used as probes to obtain some solvatochromic polarity parameters. Finally, a new polarity parameter, the LC anisotropic matrix, is introduced.  相似文献   

6.
Branched thermotropic liquid crystals (LCs) were successfully used as stabilizers for the synthesis of isotropic photoluminescent ZnO nanoparticles (NPs) in solution. (1)H?NMR spectroscopy and differential scanning calorimetry experiments demonstrate the existence of specific interactions between the LC and both the ZnO precursor and ZnO NPs. This offers the possibility for some branched molecules to act as structurally ordered hosts for the anisotropic growth of ZnO NPs.  相似文献   

7.
A simple method is used to control the size of cetyltrimethylammoniumbromide‐protected Au nanoparticles by a reversal micelle in safe organic solvent. These Au nanoparticles can be evolved to highly monodisperse Au nanoparticles capped 1‐dodecanthiol in the 2, 3, and 5 nm diameter by refluxing at~160°C for 7 hours. Their ultraviolet visible spectroscopy (UV‐vis), x‐ray diffraction (XRD, transmission electron microscopy (TEM) showed that all the three different size gold nanoparticles(NPs) displayed high size homogenous properties and easy formed large areas of long ordered two‐dimensional arrangement at the air/solid interface.  相似文献   

8.
The use of liquid crystals (LCs) as anisotropic solvents is desired for various potential applications and usually for other organic and inorganic compounds. In this work, solvent polarity parameters are obtained using a spectroscopic method for four LCs with a range of high and low dielectric anisotropy (?ε). Solvatochromic polarity parameters for these LCs were defined via Kamlet–Abboud–Taft polarity functions characterizing different temperatures and phases, isotropic and anisotropic, and using the Reichardt’s dye and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio) phenolate standard probe. The investigated polarity parameters reveal the effects of LC media on the photo-physical behaviour of solute molecules in isotropic and anisotropic media. Subsequently, a new LC polarity parameter (Zo) is introduced as an overall matrix anisotropy polarity parameter to characterize variation between isotropic and anisotropic phases. The values of Zo are sorted from higher to lower dielectric anisotropies (?ε).  相似文献   

9.
Differential scanning calorimetry (DSC) was used to characterize interactions of synthetic LCs, 4‐pentyl‐4′‐cyanobiphenyl (5CB) and TL205 (a mixture of cyclohexane‐fluorinated biphenyls and fluorinated terphenyls) with simple mimics of cell membranes. The investigation was motivated by reports that living cells can be placed into contact with TL205 without apparent toxicity, whereas contact of cells with 5CB leads to cell death. The tendency was examined for 5CB and TL205 to spontaneously partition into and influence the organization for model cell membranes composed of phospholipids. Upon contact of an aqueous dispersion of DPPC liposomes with neat LC for 4 h, 5CB partitioned into the liposomes at a weight ratio of 5:1 DPPC:5CB, whereas TL205 partitioned at a ratio of 310:1 DPPC:TL205. DSC endotherms indicated that the 5CB spontaneously partitioned into the liposomes was far more perturbing than TL205. DSC endotherms of DPPC bilayers containing the same concentration of either 5CB or TL205 also revealed 5CB to be more perturbing than TL205. The effect of up to 7.8 wt % of TL205 was small, resulting in a shift in the melting transition from 41.4°C to 40.1°C and a minor change in peak width, indicating only minor effects on the organization of the bilayer. These effects are similar to those caused by cholesterol in DPPC bilayers. In contrast, 5CB shifted the DPPC melting transition from 41.4°C to ~36°C and increased the width of the transition peak by a factor of ten, indicating a destabilization of the ordered phase in the bilayer and a disruption of the cooperative nature of the gel‐to‐LC transition of the phospholipid bilayer. Taken together, the results demonstrate that 5CB and TL205 differ significantly in their interactions with model cell membranes, which suggests one possible origin of their different toxicities toward cells.  相似文献   

10.
Graphene nanosheets are successfully applied as an effective platform for the 2D ordering of metal oxide nanoparticles. Mesoporous 2D aggregates of anatase TiO2 nanoparticles are synthesized by the heat treatment of the uniformly hybridized nanocomposite of layered titanate–reduced graphene oxide (RGO) at elevated temperatures. The precursor layered titanate–RGO nanocomposite is prepared by self‐assembly of anionic RGO nanosheets and cationic TiO2 nanosols. The calcination of the as‐prepared layered titanate–RGO nanocomposite at 500 °C induces a structural and morphological change of layered titanate nanoplates into anatase TiO2 nanoparticles without significant modification of the RGO nanosheet. Increasing the heating temperature to 600 °C gives rise to elimination of the RGO component, leading to the formation of sheetlike porous aggregates of RGO‐free TiO2 nanoparticles. The nanocomposites calcined at 500–700 °C display promising functionality as negative electrodes for lithium ion batteries. Among the present calcined derivatives, the 2D sheet‐shaped aggregate of TiO2 nanoparticles obtained from calcination at 600 °C delivers the greatest specific discharge capacity with good capacity retention for all current density conditions applied. Such superior electrode performance of the nanocomposite calcined at 600 °C is attributable both to the improved stability of the crystal structure and crystal morphology of titania and to the enhancement of Li+ ion transport through the enlargement of mesopores. The present findings clearly demonstrate the usefulness of RGO nanosheets as a platform for 2D‐ordered superstructures of metal oxide nanoparticles with improved electrode performance.  相似文献   

11.
Organic–inorganic hybrid liquid crystal (LC) gels have been synthesised by the thiol-ene reaction of a multifunctional cyclic siloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (TVMCTS) and alkane dithiols, 1,6-hexanedithiol (HDT) or 1,9-decanedithiol (DDT), in LC matrices, 4-cyano-4?-pentylbiphenyl (5CB) or 4′-n-octyl-4-cyano-biphenyl (8CB). The LC gels were prepared in an isotropic phase at 70°C or mesophases at 25°C using radical initiators. The phase transition temperatures from a mesophase to an isotropic phase of the resulting gels were lower than those of the original LCs. The gels containing 8CB (8CB gels) prepared at 25°C showed two phase transitions: smectic-to-nematic and nematic-to-isotropic transitions. By contrast, the 8CB gels synthesised in the isotropic phase showed only one phase transition from smectic phase directly to isotropic phase. Reaction conversions in the LC gels prepared at 70°C were higher than that in the gels prepared at 25°C. Scanning microscopic light scattering analysis of the LC gels cleared homogeneous small size mesh with a small amount of large defect. Polarisation micrographs of the LC gels showed framed optical textures derived from the LC molecules at room temperature. The LC gels containing more than 90 wt% of LC showed electro-optic response.  相似文献   

12.
Four polyimides containing hexylene spacer and a fluorostilbene unit in the side chains were prepared in thin‐film form by two‐step condensation of 3,3′‐bis[(4′‐fluoro‐4‐stilbenyl)oxyhexyloxy]‐4,4′‐biphenyldiamine (FS6B) with pyromellitic dianhydride (PMDA), benzophenone‐3,3′,4,4′‐tetracarboxylic dianydride (BTDA), 4,4′‐oxydi(phthalic anhydride) (ODPA), and 4,4′‐hexafluoroisopropylidenedi(phthalic anhydride) (6FDA), respectively, and their controllability of liquid crystal (LC) alignment on rubbed surfaces was investigated. Pretilt angles of LCs were achieved in the 2–9° range, depending on the rubbing density and backbone structures. The effect of the mesogenic stilbene group on the pretilting of LCs was distinctive in FS6B‐PMDA. Contact‐angle measurements on thin films annealed at 120 °C revealed that FS6B‐PMDA potentially had the better alignment stability than FS6B‐6FDA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3622–3632, 2001  相似文献   

13.
In this paper, the polyanion-containing cinnamoyl group (PACSS-CF3) was self-assembled with diazoresin (DR) to form a kind of stable covalent ultrathin film by irradiation with 365?nm UV light. The photoalignment properties of the DR/PACSS-CF3 covalent film were investigated. The covalent film was found to have anisotropy after irradiation by 297?nm linearly polarised ultraviolet light (LPUVL), and could induce uniform alignment of liquid crystals (LCs). The pretilt angle of the LC was 2.5°. The stability of the film was enhanced by the covalent bonds. The films were thermally stable to 180°C. Polarised UV-Vis spectroscopy was utilised to investigate the photochemical process of the covalent film. It was found that cinnamoyl moieties parallel to the polarisation direction of the LPUVL were consumed by the photoreaction faster than those perpendicular to the polarisation direction. It can be concluded that the selective photoreaction induced the anisotropy of the films. The anisotropic films induced the homogeneous alignment of LC.  相似文献   

14.
Thermotropic ionic liquid crystals (LCs) are useful for a number of applications such as anisotropic ion transport and as organised reaction media/solvents because of their ordered fluid properties and intrinsic charge units. A large number of different ionic LC architectures are known, but only a handful of examples of gemini (i.e. paired or dimeric) ionic LCs have been prepared and studied. In this work, a series of 20 new symmetric, imidazolium-based, gemini cationic LCs containing two bridged imidazolium cations and two pendant alkyl chains was synthesised, and the thermotropic LC behaviours were characterised. The imidazolium unit provides a highly tunable and modular platform for the design and synthesis of gemini cationic LCs which offers excellent structure control. As expected, the thermotropic LC properties of these new amphilphilic, gemini ionic LCs were found to be strongly influenced by the length of the spacer between the imidazolium units, the length of the pendant alkyl tails, and the nature of the anion. Smectic A (SmA) thermotropic LC phases were observed in more than half of the gemini imidazolium LC systems studied.  相似文献   

15.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Four novel magnetic nanoparticle catalysts with urea or urethane moieties are reported. The silica‐coated magnetic nanoparticles were simply functionalized via addition of 3‐(triethoxysilyl)propylisocyanate (TESPIC), amine or amino alcohol. TESPIC with dual labile functional groups was used as a suitable precursor for the synthesis of urethane‐based catalysts. The newly synthesized catalysts were fully characterized using a variety of techniques. These functionalized magnetic nanoparticles were used as reusable catalysts in the Strecker synthesis of α‐aminonitrile derivatives under solvent‐free conditions at 50 °C.  相似文献   

17.
Due to the limited thermal stability of current commercially available liquid crystals (LCs), the incorporation into polymer composites through standard processing techniques, such as melt coextrusion, has been hindered. Motivated by this dilemma, a series of smectic B liquid crystalline structures based on the 4,4?-alkyl substituted biphenyl moiety were synthesised through conventional methodologies and probed for their thermal stability and LC properties. Degradation temperatures were found to increase with increasing aliphatic chain length – up to 295 °C for C16 substituted structures, which is well above the processing temperatures of commercial polymers. Additionally, all compounds were found to be liquid crystalline in nature with crystal-to-smectic B transition temperatures ranging from 49.8 °C to 91.4 °C. Thermal stability, phase separation, and compatibility of LC/polystyrene composites were also examined. Less than 10% of 15A15 LC by weight in polystyrene exhibited good polymer miscibility, while phase separation occurred at loads higher than 15% by weight. We foresee the use of these LCs in applications that require elevated processing conditions to produce materials with enhanced mechanical or gas barrier properties.  相似文献   

18.
In contrast with their dimeric homologue, triply fused zinc porphyrin trimer–pentamer, as extra‐large π‐extended mesogens, assemble into columnar liquid crystals (LCs) when combined with 3,4,5‐tri(dodecyloxy)phenyl side groups ( 3 PZn – 5 PZn , Figure 1 ). Their LC mesophases develop over a wide temperature range, namely, 41–280 °C (on heating) for 5 PZn , and all adopt an oblique columnar geometry, typically seen in columnar LC materials involving strong mesogenic interactions. These LC materials are characterized by their wide light‐absorption windows from the entire visible region up to a near infrared (NIR) region. Such ultralow‐bandgap LC materials are chemically stable and serve as hole transporters, in which 5 PZn gives the largest charge carrier mobility (2.4×10?2 cm V?1 s?1) among the series. Despite a big dimensional difference, they coassemble without phase separation, in which the resultant LC materials display essentially no deterioration of the intrinsic conducting properties.  相似文献   

19.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   

20.
郭洪霞 《高分子科学》2014,32(10):1298-1310
We present a coarse-grained molecular dynamics simulation study of phase behavior of amphiphilic monolayers at the liquid crystal (LC)/water interface. The results revealed that LCs at interface can influence the lateral ordering of amphiphiles. Particularly, the amphiphile tails along with perpendicularly penetrated LCs between tails undergo a two-dimension phase transition from liquid-expanded into a liquid-condensed phase as their area density at interface reaches 0.93. While, the liquid-condensed phase of the monolayer never appears at oil/water interface with isotropic shape oil particles. These findings reveal the penetration of anisotropic LC can promote ordered lateral organization of amphiphiles. Moreover, we find the phase transition point is shifted to lower surface coverage of amphiphiles when the LCs have larger affinity to the amphiphile tails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号