首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface—whereas in bulk water the coupling is homogeneous. For strongly hydrogen‐bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near‐surface region. For weakly hydrogen‐bonded OH groups that absorb around 3500 cm?1, which are assigned to the outermost, yet hydrogen‐bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen‐bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak.  相似文献   

2.
Water around hydrophobic groups mediates hydrophobic interactions that play key roles in many chemical and biological processes. Thus, the molecular‐level elucidation of the properties of water in the vicinity of hydrophobic groups is important. We report on the structure and dynamics of water at two oppositely charged hydrophobic ion/water interfaces, that is, the tetraphenylborate‐ion (TPB?)/water and tetraphenylarsonium‐ion (TPA+)/water interfaces, which are clarified by two‐dimensional heterodyne‐detected vibrational sum‐frequency generation (2D HD‐VSFG) spectroscopy. The obtained 2D HD‐VSFG spectra of the anionic TPB? interface reveal the existence of distinct π‐hydrogen bonded OH groups in addition to the usual hydrogen‐bonded OH groups, which are hidden in the steady‐state spectrum. In contrast, 2D HD‐VSFG spectra of the cationic TPA+ interface only show the presence of usual hydrogen‐bonded OH groups. The present study demonstrates that the sign of the interfacial charge governs the structure and dynamics of water molecules that face the hydrophobic region.  相似文献   

3.
The water stable UiO‐66(Zr)‐(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10?3 S cm?1 at 90 °C and 95 % relative humidity. Quasi‐elastic neutron scattering measurements combined with aMS‐EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen‐bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton‐conduction mechanism at the molecular level in a highly conductive MOF.  相似文献   

4.
The diffusion of pure liquid water into a commercial polypropylene (PP) film at 278–348 K was studied with Fourier transform infrared attenuated total reflectance spectroscopy. Abnormal diffusion behavior was indicated by a significant deviation between the experimental data and a Fickian diffusion model with the conventional saturated boundary condition applied at the water/PP interface. This deviation was observed at all the temperatures studied. With a modified boundary condition that took into account a mass‐transfer resistance at the water/PP interface, the Fickian model was able to represent the experimental data satisfactorily. The average water diffusion coefficient varied between 1.41 and 7.64 × 10?9 cm2/s, with an activation energy of diffusion of about 19.3 kJ/mol. The interfacial mass‐transfer resistance was represented by an exponential model with an empirical relaxation parameter. The relaxation parameter β increased as the temperature increased and reached an apparent plateau. The infrared spectrum indicated a positive chemical shift of 18 cm?1 for the less strongly hydrogen‐bonded component of the broad hydroxyl stretching band with respect to pure liquid water, indicating that hydrogen‐bonding interactions were weakened or broken when water molecules diffused into the PP matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 980–991, 2002  相似文献   

5.
We report the relaxation times of electronic and vibrational coherence in the cyanine dye 1,1′,3,3,3′,3′‐hexamethyl‐4,4′,5,5′‐dibenzo‐2,2′‐indotricarbocyanine, measured using a 7.1 fs pulsed laser. The vibrational phase relaxation times are found to be between 380 and 680 fs in the ground and lowest excited singlet states. The vibrational dephasing times of the 294, 446, and 736 cm?1 modes are relatively long among the six modes associated with excited‐state wave packets. The slower relaxations are explained in terms of a coupled triplet of vibrational modes, which preserves coherence by forming a tightly bound group to satisfy the condition of circa conservation of vibrational energy. Using data from the negative‐time range (i.e., when the probe pulse precedes the pump pulse), the electronic phase relaxation time is found to be 31±1 fs. The dynamic vibrational mode in the excited state (1171 cm?1), detected in the positive‐time range, is also studied from the negative‐time traces under the same experimental conditions.  相似文献   

6.
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas‐phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2‐propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer‐gas cooling. Precise knowledge and control of the collisional environment in the buffer‐gas allows us to measure the absolute collision cross‐section for conformational relaxation. Several conformers of 1,2‐propanediol are investigated and found to have relaxation cross‐sections with He ranging from σ=4.7(3.0)×10?18 cm2 to σ>5×10?16 cm2. Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules.  相似文献   

7.
β‐Carotene in n‐hexane was examined by femtosecond transient absorption and stimulated Raman spectroscopy. Electronic change is separated from vibrational relaxation with the help of band integrals. Overlaid on the decay of S1 excited‐state absorption, a picosecond process is found that is absent when the C9‐methyl group is replaced by ethyl or isopropyl. It is attributed to reorganization on the S1 potential energy surface, involving dihedral angles between C6 and C9. In Raman studies, electronic states S2 or S1 were selected through resonance conditions. We observe a broad vibrational band at 1770 cm?1 in S2 already. With 200 fs it decays and transforms into the well‐known S1 Raman line for an asymmetric C=C stretching mode. Low‐frequency activity (<800 cm?1) in S2 and S1 is also seen. A dependence of solvent lines on solute dynamics implies intermolecular coupling between β‐carotene and nearby n‐hexane molecules.  相似文献   

8.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   

9.
The energy transfer of highly vibrationally excited isomers of dimethylnaphthalene and 2‐ethylnaphthalene in collisions with krypton were investigated using crossed molecular beam/time‐of‐flight mass spectrometer/time‐sliced velocity map ion imaging techniques at a collision energy of approximately 300 cm?1. Angular‐resolved energy‐transfer distribution functions were obtained directly from the images of inelastic scattering. The results show that alkyl‐substituted naphthalenes transfer more vibrational energy to translational energy than unsubstituted naphthalene. Alkylation enhances the V→T energy transfer in the range ?ΔEd=?100~?1500 cm?1 by approximately a factor of 2. However, the maximum values of V→T energy transfer for alkyl‐substituted naphthalenes are about 1500~2000 cm?1, which is similar to that of naphthalene. The lack of rotation‐like wide‐angle motion of the aromatic ring and no enhancement in very large V→T energy transfer, like supercollisions, indicates that very large V→T energy transfer requires special vibrational motions. This transfer cannot be achieved by the low‐frequency vibrational motions of alkyl groups.  相似文献   

10.
Two porous hydrogen‐bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra‐high proton conduction values (σ) 0.75× 10?2 S cm?1 and 1.8×10?2 S cm?1 under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic‐based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen‐bonded porous organic frameworks as solid‐state proton conducting materials.  相似文献   

11.
Raman spectra of pure and 2 wt.% gold nanoparticles (GNPs) dispersed liquid crystalline compound 4-n-Hexyloxy-4?- cyanobiphenyls (6OCB) has been recorded as a function of temperature from room temperature (solid crystal) to 80°C (isotropic liquid) in the spectral region of 500–2500 cm?1. The variation of Raman spectral parameters (peak positions and line width) with temperature is used to explain the changes in molecular alignment and its effect on inter-/intra-molecular interactions at crystal-Nematic (K-N) transition. To understand the change in molecular structure during phase transition and on account of dispersion of gold nanoparticles in pure liquid crystal more precisely, two spectral regions 1000–1500 cm?1 and 1500–2400 cm?1 have been selected separately. From the detailed study, it is concluded that increased orientational/vibrational freedom of the molecules as well as delocalisation of electron clouds results in the spectral anomalies at K-N transition. The geometrical structure of 6OCB was optimised using density functional theory (DFT) and theoretical Raman spectra have been obtained for comparison with experimental spectra. The tentative assignment of vibrational modes observed in our region of study was calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) calculation.  相似文献   

12.
Structure, energetics, and vibrational frequency of the microhydrated carbonyl sulfide anion [OCS?? (H2O)n (n = 1–6)] have been explored by the systematic ab initio study to have a comprehensive understanding about the hydration‐induced stabilization phenomenon of OCS?. Water binds with the OCS? in single hydrogen‐bonded (SHB) or double hydrogen‐bonded (DHB) fashion with O? H S and O? H O contacts. Maximum five water molecules can stay in a cyclic water network of these hydrated clusters forming interwater hydrogen bonding (IHB) with each other and out of this, maximum of two water molecules can bind directly to the OCS? in (DHB) arrangement. The stabilization energy values of OCS?? (H2O)n depict that ion–water interaction is significant up to four water molecules and beyond that OCS? is stabilized by IHB between the water molecules. The CO stretching frequency of OCS? gets red shifted, whereas CS stretching frequency gets blue shifted on hydration. Charge analysis of hydrated clusters of OCS? indicates that negative charge moves toward oxygen from sulfur on hydration. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Energy transfer from the upper triplet states of aromatic compounds to saturated compounds at 77 K has been investigated. Positions of triplet states of saturated molecules have been estimated in the ranges: 47800–48450 cm?1 for methylcyclohexane, ethylcyclohexane, ethanol and ether, 47320–47800 cm?1 for isopropylcyclohexane and transdecalin, and 48450–50000 cm?1 for isoctane. The radius of the energy transfer sphere for biphenyl-d10 and trans-decalin is found to be 5.1 Å. It is assumed that energy transfer occurs faster than vibrational relaxation.  相似文献   

14.
Recently, diketopyrrolopyrrole (DPP)‐based materials have attracted much interest due to their promising performance as a subunit in organic field effect transistors. Using density functional theory and charge‐transport models, we investigated the electronic structure and microscopic charge transport properties of the cyanated bithiophene‐functionalized DPP molecule (compound 1 ). First, we analyzed in detail the partition of the total relaxation (polaron) energy into the contributions from each vibrational mode and the influence of bond‐parameter variations on the local electron–vibration coupling of compound 1 , which well explains the effects of different functional groups on internal reorganization energy (λ). Then, we investigated the structural and electronic properties of compound 1 in its isolated molecular state and in the solid state form, and further simulated the angular resolution anisotropic mobility for both electron‐ and hole‐transport using two different simulation methods: (i) the mobility orientation function proposed in our previous studies (method 1); and (ii) the master equation approach (method 2). The calculated electron‐transfer mobility (0.00003–0.784 cm2 V?1 s?1 from method 1 and 0.02–2.26 cm2 V?1 s?1 from method 2) matched reasonably with the experimentally reported value (0.07–0.55 cm2 V?1 s?1). To the best of our knowledge, this is the first time that the transport parameters of compound 1 were calculated in the context of band model and hopping models, and both calculation results suggest that the intrinsic hole mobility is higher than the corresponding intrinsic electron mobility. Our calculation results here will be instructive to further explore the potential of other higher DPP‐containing quinoidal small molecules. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

16.
The variations of N1–H proton release energy of G–M (M = Li, Na) cation have been investigated employing density functional theory using B3LYP/6-31++G**//B3LYP/6-31+G* method. There are three modes (NO mode, N mode and O mode) when the hydrated-M+ bonds to guanine. The bonding energy of the hydrated M+ to the guanine reduces following the increase in the number of water molecules. The proton release energies of the G–M+ complexes are calculated at the condition of the different numbers of water molecules and the different modes of water molecules bonded on the G–M+. The results show that the difference of proton release energy on three modes is very small, and the proton release energies of the Na+ complexes are slightly larger than those of the Li+ complexes. The effect on the N1–H proton release is very small when the water molecules bond on the M+ cation, but the effect is very large when the water molecule bonds on the N1–H proton and the proton releases as the hydrated proton. The IR vibrational frequencies of the hydrated G–M+ complexes are calculated using analytic second derivative methods at the B3LYP/6-31+G* level. The vibrational frequency analyses show that the changes of the vibrational frequency are consistent with the changes of geometry and the changes of the N1–H proton release energy. The N1–H proton release (N1–H proton release energy: 45–60 kcal/mol) of the guanine occurs easily under the biological environment.  相似文献   

17.
The Raman spectra of tetrasilylhydrazine and tetrasilylhydrazine-d12 have been recorded for the gas, liquid and solid phases from 25 to 2500 cm?1. The infrared spectra of N2(SiH3)4 and N2(SiD3)4 have been recorded for the gas and solid phases from 40 to 2500 cm?1. The vibrational data have been interpreted on the basis of a twisted (D2d) molecular configuration for both the fluid and solid states.  相似文献   

18.
Gas-phase azulene molecules were prepared with 17200 cm?1 vibrational energy in the S0 state by laser excitation of the S1 state and subsequent internal conversion. Rates of vibrational energy removal (for several collision partners) were determined from the decay of the CH-stretch fluorescence at 3.3 μm. A stepladder model indicates each azulene-azulene collision removes 3500 cm?1 of vibrational energy.  相似文献   

19.
We studied the interaction of water in poly(ethylene‐co‐vinyl acetate) of various vinyl acetate compositions and poly(vinyl acetate), on the basis of the infrared spectrum of the water dissolved therein. The spectrum shows a very sharp and distinct band at about 3690 cm?1 (named as A), and less‐sharp two bands around 3640 (B) and 3550 cm?1 (C), the A band being outstanding especially at a low vinyl acetate composition. As the vinyl acetate composition increases, the A band decreases in intensity relative to the C band, whereas the B band increases contrarily. Analysis of the spectral change has elucidated that one‐bonded water (of which one OH is hydrogen‐bonded to the C?O of an ester group and the other OH is free) and two‐bonded water (each OH of which is hydrogen‐bonded to one C?O) coexist in the copolymer and that two‐bonded water increases in relative population with increasing vinyl acetate composition. Dissolved water is entirely two‐bonded in poly(vinyl acetate), in which C?O groups are densely distributed in the matrix. We proved that dissolved water in polymers is hydrogen‐bonded through one or two OH groups to the possessed functional groups but does not cluster. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 777–785, 2005  相似文献   

20.
We present a pseudopotential local spin density calculation of the bond length, vibrational frequency, and binding energy for the 3Σg? state of the germanium dimer. Predictions for the equilibrium bond length and vibrational frequency are given. An overestimate of the binding energy is obtained; this is consistent with other local spin density calculations for sp bonded diatomic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号