首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

2.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

3.
Newly designed 2H‐benzimidazole derivatives which have solubility groups at 2‐position have been synthesized and incorporated into two highly soluble carbazole based alternating copolymers, poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spirocyclohexane)] (PCDTCHBI) and poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spiro‐4′′‐((2′′′‐ethylhexyl)oxy)‐cyclohexane)] (PCDTEHOCHBI) for photovoltaic application. These alternating copolymers show low‐band gap properties caused by internal charge transfer from an electron‐rich unit to an electron‐deficient moiety. HOMO and LUMO levels are –5.53 and –3.86 eV for PCDTCHBI, and –5.49 and –3.84 eV for PCDTEHOCHBI, respectively. Optical band gaps of PCDTCHBI and PCDTEHOCHBI are 1.67 and 1.65 eV, respectively. The new carbazole based the 2H‐benzimidazole polymers show 0.11–0.13 eV lower values of band gaps as compared to that of carbazole based benzothiadiazole polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), while keeping nearly the same deep HOMO levels. The power conversion efficiencies of PCDTCHBI and PCDTEHOCHBI blended with [6,6]phenyl‐C71‐butyric acid methyl ester (PC71BM) are 1.03 and 1.15%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
This study reports a comparative study on electrochromic properties of two donor–acceptor–donor (DAD)‐type polymers namely poly(2‐heptyl‐4,7‐di(thiophen‐2‐yl)‐1H‐benzo [d]imidazole) (BImTh) and poly(4,7‐bis(2,3‐dihydrothieno[3,4‐b] [1,4]dioxin‐5‐yl)‐2‐heptyl‐1H‐benzo[d]imidazole) (BImEd). DAD‐type monomers were polymerized electrochemically on indium tin oxide‐coated glass slides to determine the optical properties of the polymers. Electrochemical p‐doping experiments were performed to determine the band gap and absorption band values of the polymer films at different redox states. Polymerization of BImTh and BImEd yields multichromic polymers. Donor and acceptor effects are studied by comparing the PBImEd and PBImTh with corresponding benzotriazole derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005  相似文献   

6.
An alternating copolymer composed of heal‐to‐tail‐structured 3,4′‐dihexyl‐2,2′‐bithiophene (DHBT) and pyrene units [poly(DHBT‐alt‐PYR)] was synthesized using a Stille coupling reaction for use in photovoltaic devices as a p‐type donor. For the reduction of the bandgap energy of poly(DHBT‐alt‐PYR), 4,7‐bis(3′‐hexyl‐2,2′‐bithiophen‐5‐yl)benzo[c][1,2,5]thiadiazole (BHBTBT) units were introduced into the polymer. Poly(DHBT‐co‐PYR‐co‐BHBTBT)s were synthesized using the same polymerization reaction. The synthesized polymers were soluble in common organic solvents and formed smooth thin films after spin casting. The optical bandgap energies of the polymers were obtained from the onset absorption wavelengths. The measured optical bandgap energy of poly(DHBT‐alt‐PYR) was 2.47 eV. As the BHBTBT content in the ter‐polymers increased, the optical bandgap energies of the resulting polymers decreased. The bandgap energies of poly(50DHBT‐co‐40PYR‐co‐10BHBTBT) and poly(50DHBT‐co‐20PYR‐co‐30BHBTBT) were 1.84 and 1.73 eV, respectively. Photovoltaic devices were fabricated with a typical sandwich structure of ITO/PEDOT:PSS/active layer/LiF/Al using the polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester as the electron acceptor. The device using poly(50DHBT‐co‐20PYR‐co‐30BHBTBT) showed the best performance among the fabricated devices, with an open‐circuit voltage, short‐circuit current, fill factor, and maximum power conversion efficiency of 0.68 V, 5.54 mA/cm2, 0.35, and 1.31%, respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
3‐Dodecylthiophene end‐capped two monomers: 2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzothiophene (DBT‐3DTh) and 2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzofuran (DBF‐3DTh) were synthesized via Stille coupling reaction. Both monomers exhibited emission peaks at about 400 nm with fluorescence quantum yields ranging from 0.16 to 0.21. The corresponding electroactive polymers poly(2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzothiophene) (PDBT‐3DTh) and poly(2,8‐bis‐(4‐dodecyl‐thiophen‐2‐yl)‐dibenzofuran) (PDBF‐3DTh) were obtained by electropolymerization method and displayed good electrochemical stability. Both polymers switched between light gray in the neutral state and blue in the oxidized state. Kinetic investigations showed that PDBT‐3DTh exhibited a maximum optical contrast (ΔT %) of 25.23% at 575 nm with the coloration efficiency (CE) of 196 cm2 C?1. However, the electrochromic properties of PDBF‐3DTh were inferior to PDBT‐3DTh. Further detailed discussions with EDOT and 3‐alkylthiophenes end‐capped DBT/DBF hybrid electrochromic polymers were comparatively studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1468–1478  相似文献   

8.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

10.
A series of fluorene–thiophene‐based semiconducting materials, poly(9,9′‐dioctylfluorene‐alt‐α,α′‐bisthieno[3,2‐b]thiophene) (F8TT2), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐thieno[3,2‐b]thiophene) (BDOHF8TT), poly(9,9′‐di(3,6‐dioxaheptyl)fluorene‐alt‐bithiophene) (BDOHF8T2), and poly(9,9′‐dioctylfluorene‐co‐bithiophene‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine) (F8T2TPA), was synthesized through a palladium‐catalyzed Suzuki coupling reaction. F8TT2, BDOHF8TT, BDOHF8T2, and F8T2TPA films exhibited photoluminescence maxima at 523, 550, 522, and 559 nm, respectively. Solution‐processed field‐effect transistors (FETs) fabricated with all the copolymers except F8T2TPA showed p‐type organic FET characteristics. Studies of the differential scanning calorimetry scans and FETs of the polymers revealed that more crystalline polymers gave better FET device performance. The greater planarity and rigidity of thieno[3,2‐b]thiophene in comparison with bithiophene resulted in higher crystallinity of the polymer backbone, which led to improved FET performance. On the other hand, the random incorporation of the triphenylamine moiety into F8T2TPA caused the polymer chains to lose crystallinity, resulting in an absence of FET characteristics. With this study, we could assess the liquid‐crystallinity dependence of the field‐effect carrier mobility on organic FETs based on liquid‐crystalline copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4709–4721, 2006  相似文献   

11.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

12.
Substituted 7‐aryl‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy substituent at the para‐position (p‐OMe, 2a ) or an electron‐withdrawing chloro one at the para‐ (p‐Cl, 2b ), meta‐ (m‐Cl, 2c ) , and ortho‐positions (o‐Cl, 2d ) of the benzene ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative specific rotation were obtained for all of four monomers, and the polymer obtained from 2a showed smaller specific rotation value than that of polymer having no substituent (p‐H, 1 ) on the phenyl group and the polymers obtained from 2b–d showed larger ones. It was found that the kind of a substituent and its substitution position on the phenyl group affect significantly the optical activity of polymers. The largest specific rotation value of [α]435= ?153.2° was obtained in the polymerization of 2d with an ortho‐chloro substituent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 437–444  相似文献   

13.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

14.
A simple synthetic route was used for the synthesis of a novel series of alternating copolymers based on substituted 2,7‐distyrylfluorene bridged through alkylene chains. First, 2,7‐dibromofluorene was reacted with 2 equiv of butyllithium, and this was followed by a treatment with 1 equiv of α,ω‐dibromoalkane to yield the intermediate, poly(2,7‐dibromofluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl). ( 1 ) Heck coupling of the latter with 1‐tert‐butyl‐4‐vinylbenzene afforded the target, poly[2,7‐bis(4‐tert‐butylstyryl)fluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl] ( 2 ). The two versions of 2 ( 2a and 2b which have hexane and decane, respectively, as alkane groups) were readily soluble in common organic solvents. Their glass‐transition temperature was relatively low (52 and 87 °C). An intense blue photoluminescence emission with maxima at about 408 and 409 nm was observed in tetrahydrofuran solutions, whereas thin films exhibited an orange emission with maxima at 569 and 588 nm. Very large redshifts of the photoluminescence maxima and Stokes shifts in thin films indicated strong aggregation in the solid state. Both polymers oxidized and reduced irreversibly. Single‐layer light‐emitting diodes with hole‐injecting indium tin oxide and electron‐injecting aluminum electrodes were fabricated. They emitted orange light with external electroluminescence efficiencies of 0.52 and 0.36% photon/electron, as determined in light‐emitting diodes made of 2a and 2b , with alkylenes of (CH2)6 and (CH2)10, respectively. An increase in the external electroluminescence efficiency up to 1.5% was reached in light‐emitting diodes made of polymer blends consisting of 2a and poly(9,9‐dihexadecylfluorene‐2,7‐diyl), which emitted blue‐white light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 809–821, 2007.  相似文献   

15.
A novel series of poly(10‐hexyl‐phenothiazine‐S,S‐dioxide‐3,7‐diyl) and poly(9,9′‐dioctyl‐fluorene‐2,7‐diyl‐alt‐10‐hexyl‐3,7‐phenothiazine‐S,S‐dioxide) (PFPTZ‐SS) compounds were synthesized through Ni(0)‐mediated Yamamoto polymerization and Pd(II)‐catalyzed Suzuki polymerization. The synthesized polymers were characterized by 1H NMR spectroscopy and elemental analysis and showed higher glass transition temperatures than that of pristine polyfluorene. In terms of photoluminescence (PL), the PFPTZ‐SS compounds were highly fluorescent with bright blue emissions in the solid state. Light‐emitting devices were fabricated with these polymers in an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration. The electroluminescence (EL) of the copolymers differed from the PL characteristics: the EL device exhibited a redshifted greenish‐blue emission in contrast to the blue emission observed in the PL. Additionally, this unique phenothiazine‐S,S‐dioxide property, triggered by the introduction of an electron‐deficient SO2 unit into the electron‐rich phenothiazine, gave rise to improvements in the brightness, maximum luminescence intensity, and quantum efficiency of the EL devices fabricated with PFPTZ‐SS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1236–1246, 2007  相似文献   

16.
Fluorene‐based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film‐forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐1,4‐phenylenevinylene), poly(9,9′‐n‐dihexyl‐2,7‐fluorenedilvinylene‐alt‐2,5‐thiophene), and poly[(9,9‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] displaying high two‐photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross‐section peak values for these materials are as high as 3000 Göppert Mayer (1 GM = 1 × 10?50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two‐photon luminescence and also displayed optical limiting behavior, which, in combination with their well‐established properties, make them highly suitable for nonlinear optical devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148–153, 2012  相似文献   

17.
Novel polyfluorene copolymers alternately having an 1,3,4‐oxadiazole unit in the main chain were prepared by both one‐step and two‐step methods for polyoxadiazole synthesis. They displayed highly efficient blue photoluminescence, the properties of which were affected by the extent of conjugation and the changes in the electron density by a side chain. An electrochemical analysis of the polymers using cyclic voltammetry suggested that they could be used as electron‐transport/hole‐blocking materials as well as blue emission materials for polymer light‐emitting diodes. A simple double‐layer device consisting of poly(N‐vinylcarbazole) as a hole‐transport layer and poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐((1,4‐bis(1,3,4‐oxadiazole)‐2,5‐di(2‐ethylhexyloxy)phenylene)‐5,5′‐diyl)] as an emission layer exhibited narrow blue electroluminescence with a maximum at 430 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1058–1068, 2004  相似文献   

18.
We have synthesized four types of cyclopentadithiophene (CDT)‐based low‐bandgap copolymers, poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PehCDT‐BT ), poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PocCDT‐BT ), poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PehCDT‐TZ ), and poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PocCDT‐TZ ), for use in photovoltaic applications. The intramolecular charge‐transfer interaction between the electron‐sufficient CDT unit and electron‐deficient bithiazole (BT) or thiazolothiazole (TZ) units in the polymeric backbone induced a low bandgap and broad absorption that covered 300 nm to 700–800 nm. The optical bandgap was measured to be around 1.9 eV for PehCDT‐BT and PocCDT‐BT , and around 1.8 eV for PehCDT‐TZ and PocCDT‐TZ . Gel permeation chromatography showed that number‐average molecular weights ranged from 8000 to 14 000 g mol?1. Field‐effect mobility measurements showed hole mobility of 10?6–10?4 cm2 V?1 s?1 for the copolymers. The film morphology of the bulk heterojunction mixtures with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) was also examined by atomic force microscopy before and after heat treatment. When the polymers were blended with PCBM, PehCDT‐TZ exhibited the best performance with an open circuit voltage of 0.69 V, short‐circuit current of 7.14 mA cm?2, and power conversion efficiency of 2.23 % under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm?2).  相似文献   

19.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

20.
Mesogen jacketed liquid crystalline poly(1‐alkyne) and poly(1‐phenyl‐1‐alkyne) linked pendants of terphenyl mesogens with hexyloxy tails at the waist position (? {RC?C? [(CH2)3OOC‐terpheyl‐(OC6H13)2]}n? , where R?H, PHATP(OC6)2 ; R?C6H5, PPATP(OC6)2 ) were synthesized. The influences of structural variations on the thermal, mesomorphic, and luminescent properties were investigated. Polymerizations of all monomers are carried out by WCl6‐Ph4Sn catalysts successfully. The polymers are stable (Td ≥ 340 °C) and soluble in common solvents. The monomers and polymers show enantiotropic SmA phases in the heating and cooling processes, and the lateral side chains of the mesogenic units are perpendicular to the main chain. The “jacket effect” of chromophoric terphenyl core “shell” around the main chain also contributes to polymers with high photoluminescence, and the pendant‐to‐backbone energy transfer path is involved in the luminescence process of this polymers. In comparison with monosubstituted polyacetylene PHATP(OC6)2 , the disubstituted polyacetylene PPATP(OC6)2 shows better photoluminescence in both THF solution and film, and exhibited about 40 nm red‐shifted than PHATP(OC6)2 , indicating that the “jacket effect” of terphenyl mesogens forces poly(1‐phenyl‐1‐alkyne) backbone to extend in a more planar conformation with a better conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号