首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the dynamics of quantum discord of two-qubit system in a quantum spin environment at finite temperature in the thermodynamics limit. Special attention is paid to the difference between the entanglement and quantum discord when considering the influences of the environment temperature and the initial system states. We show that in the same range of the physical parameters, when the system states behave no entanglement or entanglement sudden death, the quantum discord keeps nonzero. So the quantum discord is more robust than entanglement under this decoherence environment. Furthermore, we also illustrate that we can tune the parameters related to the system and the environment to suppress the decay of quantum discord.  相似文献   

2.

We investigate the dynamics and protection of quantum entanglement of a qutrit-qutrit system under local amplitude damping channels with finite temperature. We consider two different initial states. We find that the qutrit-qutrit entanglement decays monotonically as the decoherence strength increases, and may go through entanglement sudden death at higher temperature. Special attention is paid to how to protect the quantum entanglement from decoherence by weak measurement and quantum measurement reversal. Our results show that the entanglement increases with the increase of weak measurement strength when the temperature is lower. However, the protections of entanglement by weak measurement and quantum measurement reversal are almost failed and the decays of entanglement goes up with the increase of weak measurement strength for different decoherence strength when the temperature is higher, even entanglement suffers sudden death.

  相似文献   

3.
贺志  姚春梅  李莉  王琼 《中国物理 B》2016,25(8):80304-080304
The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401(2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit(QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubitinitial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states,where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case.  相似文献   

4.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

5.
We investigate the dynamics of geometric measure of quantum discord (GMQD) for a class of two-qubit states under local decoherence channels: bit-, phase-, and bit-phase flips. We find that there are four types of dynamical behaviors of the GMQD, i.e., monotonic decay, existing a sudden change point, existing two sudden change points, and unaffected for a finite time interval and then monotonic decay. Furthermore, we establish a factorization law for the GMQD under these decoherence channels. From this law the lower bound of the GMQD can be obtained.  相似文献   

6.
Finding the most robust entangled states during the whole process of decoherence is a particularly fundamental problem for quantum physics and quantum information processing. In this paper, the decoherence process of two-qubit system under two individual identical decoherence channels is investigated systematically. We find that although the robustness of two-qubit states with same initial entanglement is usually different, the Bell-like states are always the most robust entangled states during decoherence. That is to say, affected by the same amount of noise, the remain entanglement of an arbitrary two-qubit state is not more than that of a Bell-like state with the same initial entanglement.  相似文献   

7.
Classical correlation (CC), quantum discord (QD) and entanglement (QE) of two qubits in one-side and two-side decoherence models are investigated. The sudden change of quantum discord (DSC) as well as classical correlation and sudden death of entanglement (ESD) are found. It is proved that QE (QD) presents no sudden change (sudden death). We prove that, for nonzero occupation number of the reservoir, QE must suffer sudden death; For zero occupation number and X-form initial states, we obtain the states which are robust and the states which experience sudden death. It is verified that if DSC and ESD occur under one-side decoherence, then it must appear in the two-side decoherence, while the reverse does not hold. We obtain the boundaries of CC-QE plane and QD-QE plane, and give the state possessing maximal amount of CC (QD) for a given amount of QE.  相似文献   

8.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

9.
In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.  相似文献   

10.
The decoherence and the decay of quantum entanglement due to both population relaxation and thermal effects are investigated for the two qubits initially prepared in the extended Werner-like state by solving the Lindblad form of the master equation, where each qubit is interacting with an independent reservoir at finite temperature T. Entanglement sudden death (ESD) and entanglement sudden birth (ESB) are observed during the evolution process. We analyze in detail the effects of the mixedness, the degree of entanglement of the initial states and finite temperature on the time of entanglement sudden death and entanglement sudden birth. We also obtain an analytic formula for the steady state concurrence that shows its dependence on both the system parameters, the decoherence rate and finite temperature. These results arising from the combination of extended Werner-like initial state and independent thermal reservoirs suggest an approach to control the maximum possible concurrence even after the purity and finite temperature induce sudden birth, death and revival.  相似文献   

11.
The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.  相似文献   

12.
The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.  相似文献   

13.
Taming decoherence is a critical issue in quantum information science. We here investigate amplitude-damping decoherence suppression of two-qubit entangled states by weak quantum measurements. It is shown that the weak measurements can effectively suppress the decoherence for different initial entangled states. More interestingly, we show that the weak measurements have different effects on the entanglement protection for two entangled states which are equivalent under a local unitary operation. This result implies that the entanglement protection effect could be modulated according to different demands.  相似文献   

14.
The quantum coherence and correlation dynamics for a two-qubit system in the Ising spin-chain environment are studied. A sudden change of coherence is found near the critical point, which provides us with an effective way to detect the quantum phase transition. By studying the relationship between quantum discord and coherence, we find that coherence displays the behavior of classical correlation for t t_0, and of quantum discord for t t_0, where t_0 is the time-point of a sudden transition between classical and quantum decoherence.  相似文献   

15.
赵军龙  张译丹  杨名 《物理学报》2018,67(14):140302-140302
量子度量学是研究量子测量与统计推断的一门学科,主要利用量子手段来提高参数估计的精度,在量子信息处理与测量中起到关键作用.量子参数估计的一般过程包含四个步骤:探针态的制备、参数化过程、对参数化后的输出态进行测量以及根据测量结果估计待测参数.其中探针态的选取对测量精度起着至关重要的作用.然而在实际的量子探针态的制备过程中,初始探针态会受到环境噪声的影响.目前人们已经研究了W态与Greenberger-Horne-Zeilinger(GHZ)态的量子Fisher信息(QFI)在典型噪声通道下的变化行为.由于W态与GHZ态有着不同的纠缠性质,对于W态与GHZ态的叠加态的QFI动力学研究具有重要的实际意义.故此,本文主要研究典型噪声通道对这两种状态的叠加态的QFI动力学行为的影响,得出了QFI随噪声参数的变化行为.结果表明,叠加态中W态组分可明显对抗相位阻尼噪声对探针态的QFI的影响,而其中的GHZ态组分可明显对抗振幅阻尼噪声的影响,从而为在实际环境中选取高精度的参数估计过程提供参考.  相似文献   

16.
We study the decoherence rate for estimating the time at which the coherence instability of a quantum pure state is onset. We analyze the coherence stability of pure states of a three-level quantum system under the effect of a bosonic reservoir and driven by two Raman classical fields. By assuming the boson systems to be in thermal states we find for a symmetric V-system a set of three states free from decoherence and, for a symmetric cascade-system, a two-dimensional subspace whose states are stable against the considered decoherence mechanism.  相似文献   

17.
We study the dynamics of multipartite quantum correlations measured by the lower bound of concurrence and quantum discord in a three-qubit system coupled to an XY spin chain. For the initial pure GHZ and W state, we find the lower bound of entanglement is more robust than the quantum discord against the decoherence induced by the spin environment. But for the Werner state, the sudden death of discord is not observed even in the presence of entanglement sudden death. By comparing the evolutions for the GHZ and W states, we show that the W state preserves more quantum correlations than the GHZ state. In addition, we put research emphasis on the relation between the dynamics of multipartite quantum correlations and the quantum phase transition of the spin environment.  相似文献   

18.
Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.  相似文献   

19.
In this paper, we revisit the problem of quantum entanglement in an oscillating macroscopic mirror previously studied by Marshall et al. consisting of a modified Michelson interferometer where one of the mirrors is free to oscillate about its center of mass. A photon incident upon the oscillating mirror becomes entangled with the mirror, driving the mirror into a superposition of quantum states. Once the photon and mirror decouple, the mirror returns to its initial state. The purpose of our investigations was to optimize the parameter regime, taking into consideration the current state of technology and the demands imposed by the need to maintain a stable environment in the presence of thermal noise. Optimization should not demand ultra-low temperatures and this is reflected in our results. Our results also show that if the separation between states is maintained at 10-14 m, the mirror size is reduced, making it easier to induce superposition in the mirror. The critical nature of mirror reflectivity and its connection to cavity decay rate was also revealed by our investigations. The results obtained through our investigations could be useful in quantum error correction, where decoherence negatively affects the results of computations performed by quantum computers. Finally, we note that we are only concerned with an isolated system, where no losses to the external environment occur and any decoherence that occurs within the system remains internal to the system; that is, any mention of decoherence refers specifically to recoverable decoherence.  相似文献   

20.
The exact dynamics of quantum discord (QD) of two strongly driven qubits, which are initially prepared in the X-type quantum states and inserted in two independent dissipative cavities or in a common dissipative cavity, are studied. The results indicate that both in the two cases, the evolution of QD is independent of the initial cavity state. For the two independent dissipative cavities, it is found that the phenomenon of sudden transition between classical and quantum decoherence exists and the transition time can be greatly delayed by suitably choosing the initial state parameter of the two qubits, the cavity mode-driving field detunning and the decay rate of the cavity. For the common dissipative cavity, it is shown that for some initial states of the two qubits, the QD can increase for a finite time at first, and then it decreases to a steady value, while for some other initial states, the QD can increase monotonously or with oscillation till a stable value is reached. Moreover, the creation of QD for the two qubits in a common cavity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号