首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural, electronic, and magnetic properties of Au_nGd(n = 6–15) small clusters are investigated by using first principles spin polarized calculations and combining with the ab-initio evolutionary structure simulations. The calculated binding energies indicate that after doping a Gd atom Aun Gd cluster is obviously more stable than a pure Au_(n+1) cluster.Au_6Gd with the quasiplanar structure has a largest magnetic moment of 7.421 μ_B. The Gd-4 f electrons play an important role in determining the high magnetic moments of Au_nGd clusters, but in Au_6Gd and Au_(12) Gd clusters the unignorable spin polarized effects from the Au-6 s and Au-5 d electrons further enhance their magnetism. The HOMO–LUMO(here, HOMO and LUMO stand for the highest occupied molecular orbital, and the lowest unoccupied molecular orbital, respectively)energy gaps of Au_nGd clusters are smaller than those of pure Au_(n+1) clusters, indicating that Au_nGd clusters have potential as new catalysts with enhanced reactivity.  相似文献   

2.
顾建兵  杨向东  王怀谦  李慧芳 《中国物理 B》2012,21(4):43102-043102
The geometrical structures, relative stabilities, electronic and magnetic properties of small B n Al (2 ≤ n ≤ 9) clusters are systematically investigated by using the first-principles density functional theory. The results show that the Al atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable B n Al (2 ≤ n ≤ 9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B 4 Al and B 8 Al clusters each have a higher relative stability. Especially, the B 8 Al cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced odd-even oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B 7 Al and B 9 Al clusters.  相似文献   

3.
The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt 6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt 7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt 7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt 6 clusters is from 0 μ B to 7 μ B , revealing that the MPt 6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.  相似文献   

4.
丁利苹  邝小渝  邵鹏  赵亚儒  李艳芳 《中国物理 B》2012,21(4):43601-043601
Using the meta-generalized gradient approximation (meta-GGA) exchange correlation TPSS functional, the geo- metric structures, the relative stabilities, and the electronic properties of bimetallic Ag n X (X=Au, Cu; n=1–8) clusters are systematically investigated and compared with those of pure silver clusters. The optimized structures show that the transition point from preferentially planar to three-dimensional structure occurs at n = 6 for the Ag n Au clusters, and at n = 5 for Ag n Cu clusters. For different-sized Ag n X clusters, one X (X=Au or Cu) atom substituted Ag n+1 structure is a dominant growth pattern. The calculated fragmentation energies, second-order differences in energies, and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gaps show interesting odd–even oscillation behaviours, indicating that Ag 2,4,6,8 and Ag 1,3,5,7 X (X=Au, Cu) clusters keep high stabilities in comparison with their neighbouring clusters. The natural population analysis reveals that the charges transfer from the Ag n host to the impurity atom except for the Ag 2 Cu cluster. Moreover, vertical ionization potential (VIP), vertical electronic affinity (VEA), and chemical hardness (η) are discussed and compared in depth. The same odd–even oscillations are found for the VIP and η of the Ag n X (X=Au, Cu; n=1–8) clusters.  相似文献   

5.
Equilibrium geometries, stabilities, and electronic properties of small Ti_mZr_n(n + m ≤ 5) clusters were investigated using the density functional method. The ground states were determined, and it was found that the larger clusters and those consisting of more Zr atoms are more stable. The electronic properties of the clusters were discussed based on HOMO-LUMO gaps, vertical ionization potentials(VIP), and vertical electron affinities(VEA). Furthermore, we studied the interactions between those clusters and molecular hydrogen, and found that in all the cases dissociative chemisorptions occurred. According to the chemisorption energies, the pure Zr clusters are relatively more active towards H_2 when compared with the others except Ti_3Zr, which shows the highest activity. The magnetic moments of Ti_mZr_n and Ti_mZr_nH_2 were also compared, and the results show that the hydrogenated clusters have the same or decreased total magnetic moments with respect to the bare clusters except for Ti_3Zr_2.  相似文献   

6.
The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms are found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n = 2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.  相似文献   

7.
张秀荣  杨星  丁迅雷 《中国物理 B》2012,21(9):93601-093601
The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt6 clusters is from 0 μB to 7 μB, revealing that the MPt6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.  相似文献   

8.
张川晖  崔航  申江 《中国物理 B》2012,21(10):103102-103102
The structure and the magnetic moment of transition metal encapsulated in a Au 12 cage cluster have been studied by using the density functional theory.The results show that all of the transition metal atoms(TMA) can embed into the Au 12 cage and increase the stability of the clusters except Mn.Half of them have the I h or O h symmetry.The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase;the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms.The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase.The binding energies of many M@Au 12 clusters are much larger than that of the pure Au 13 cluster,while the gaps of some of them are less than that of Au 13,so maybe Cr@Au 12,Nb@Au 12,and W@Au 12 clusters are most stable in fact.For magnetic calculations,some clusters are quenched totally,but the Au 13 cluster has the largest magnetic moment of 5 μ B.When the number of extra-nuclear electrons of the encapsulated TMA is even,the magnetic moment of relevant M@Au 12 cluster is even,and so are the odd ones.  相似文献   

9.
史顺平  张传瑜  赵晓凤  李侠  闫珉  蒋刚 《中国物理 B》2017,26(8):83103-083103
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed.  相似文献   

10.
张建婷  李晶  盛勇 《中国物理 B》2014,23(1):13103-013103
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.  相似文献   

11.
The geometrical structures, relative stabilities, electronic and magnetic properties of small BnAl-(2〈n〈9)clusters are systematicalyy investigated by using the first-principles density functional theory. The results show that the A1 atom prefers to reside either on the outer-side or above the surface, but not in the centre of the clusters in all of the most stable BnAl-(2〈n〈9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters. All the results of the analysis for the fragmentation energies, the second-order difference of energies, and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B4A1- and B8A1- clusters each have a higher relative stability. Especially, the BsA1-cluster has the most enhanced chemical stability. Furthermore, both the local magnetic moments and the total magnetic moments display a pronounced oddeven oscillation with the number of boron atoms, and the magnetic effects arise mainly from the boron atoms except for the B7A1- and BgA1- clusters.  相似文献   

12.
齐凯天  毛华平  王红艳  盛勇 《中国物理 B》2010,19(3):33602-033602
Employing first-principles methods,based on the density function theory,and using the LANL2DZ basis sets,the ground-state geometric,the stable and the electronic properties of Aun-2Y2 clusters are investigated in this paper.Meanwhile,the differences in property among pure gold clusters,pure yttrium clusters,gold clusters doped with one yttrium atom,and gold clusters doped with two yttrium atoms are studied.We find that when gold clusters are doped by two yttrium atoms,the odd-even oscillatory behaviours of Aun-1Y and Aun disappear.The properties of Aun-2Y2 clusters are close to those of pure yttrium clusters.  相似文献   

13.
吕瑾  张江燕  梁瑞瑞  武海顺 《中国物理 B》2016,25(6):63103-063103
The configurations,stabilities,electronic,and magnetic properties of Fe_nAu(n = 1–12) clusters are investigated systematically by using the relativistic all-electron density functional theory with the generalized gradient approximation.The substitutional effects of Au in Fe_(n+1)(n = 1,2,4,5,10–12) clusters are found in optimized structures which keep the similar frameworks with the most stable Fe_(n+1)clusters.And the growth way for Fe_nAu(n = 6–9) clusters is that the Au atom occupies a peripheral position of Fen cluster.The peaks appear respectively at n = 6 and 9 for Fen Au clusters and at n = 5 and 10 for Fe_(n+1)clusters based on the size dependence of second-order difference of energy,implying that these clusters possess relatively high stabilities.The analysis of atomic net charge Q indicates that the charge always transfers from Fe to Au atom which causes the Au atom to be nearly non-magnetic,and the doped Au atom has little effect on the average magnetic moment of Fe atoms in Fen Au cluster.Finally,the total magnetic moment is reduced by 3 μB for each of Fen Au clusters except n = 3,11,and 12 compared with for corresponding pure Fe_(n+1) clusters.  相似文献   

14.
张帅  秦怡  马毛粉  卢成  李根全 《中国物理 B》2014,23(1):13601-013601
Geometric structures, stabilities, and electronic properties of SrSin(n = 1–12) clusters have been investigated using the density-functional theory within the generalized gradient approximation. The optimized geometries indicate that one Si atom capped on SrSin 1structure and Sr atom capped Sinstructure for difference SrSinclusters in size are two dominant growth patterns. The calculated average binding energy, fragmentation energy, second-order energy difference, the highest occupied molecular orbital, and the lowest unoccupied molecular orbital(HOMO–LUMO) gaps show that the doping of Sr atom can enhance the chemical activity of the silicon framework. The relative stability of SrSi9is the strongest among the SrSinclusters. According to the mulliken population and natural population analysis, it is found that the charge in SrSin clusters transfer from Sr atom to the Sinhost. In addition, the vertical ionization potential, vertical electron affinity, and chemical hardness are also discussed and compared.  相似文献   

15.
The first-principles method based on density-functional theory is used to investigate the geometries of the lowest-lying isomers of Aun Ag2 (n = 1 ~ 4) clusters. Several low-lying isomers are determined, and many of them in electronic configurations with a high spin multiplicity. The stability trend of Ag-doped Aun clusters is compared to that of pure Aun clusters. Our results indicate that the inclusion of two Ag atoms in the clusters lowers the cluster stability, indicating higher stability as the structures grow in size. The bigger energy difference between the Aun and Aun Ag2 curves as the structures grows in size. This information will be useful to understanding the enhanced catalytic activity and selectivity gained by using silver-doped gold catalyst.  相似文献   

16.
陈冬冬  邝小渝  赵亚儒  邵鹏  李艳芳 《中国物理 B》2011,20(6):63601-063601
We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . . . , 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.  相似文献   

17.
The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.  相似文献   

18.
The conductance stabilities of carbon atomic chains(CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green's function method combined with density functional theory.Regular even–odd conductance oscillation is observed as a function of the wire length.This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads.The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel,whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases.The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads.Results show that the current–voltage evolution of CACs can be affected by the chain length.The differential and second derivatives of the conductance are also provided.  相似文献   

19.
L10FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order–disorder transition temperature of the nanocomposite is higher than 600℃, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters,formation energy, electronic structure, atomic magnetic moment and order–disorder transition temperature of L10FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10FePt. The special quasirandom structures(SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order–disorder transition temperatures are 1377℃ and 600℃, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively,indicating that the magnetic property of the doped system is almost unchanged.  相似文献   

20.
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin (n - 1-8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital (NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6 clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号