首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a method to construct new quantum integrable models. As an example, we construct an integrable anisotropic quantum spin chain which includes the nearest-neighbor, next-nearestneighbor and chiral three-spin couplings. It is shown that the boundary fields can enhance the anisotropy of the first and last bonds, and can induce the Dzyloshinsky–Moriya interactions along the z-direction at the boundaries. By using the algebraic Bethe ansatz, we obtain the exact solution of the system. The energy spectrum of the system and the associated Bethe ansatz equations are given explicitly. The method provided in this paper is universal and can be applied to constructing other exactly solvable models with certain interesting interactions.  相似文献   

2.
By the concept of negativity, we investigate the thermal entanglement in the two-spin (12,s) Heisenberg XXX and XXZ models in the presence of Dzyaloshinskii–Moriya (DM) interactions respectively. Through calculation, we know that for the XXZ model, the Δ and s can be used together to control the extent of entanglement and, in particular, to obtain large entanglement. The effect of spin in both models shows that it can increase the critical temperature and the negativity decreases as the spin increases. We found that the DM interaction has different effects on Fermi and Bose systems so it can not only excite entanglement but also affect the entanglement in different spin systems.  相似文献   

3.
《中国物理 B》2021,30(5):50201-050201
We study the exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. The energy and Bethe ansatz equations of the Gaudin model can be obtained via the off-diagonal Bethe ansatz method. Based on the off-diagonal Bethe ansatz solutions, we construct the Bethe states of the inhomogeneous X X X Heisenberg spin chain with the generic open boundaries. By taking a quasi-classical limit, we give explicit closed-form expression of the Bethe states of the Gaudin model. From the numerical simulations for the small-size system, it is shown that some Bethe roots go to infinity when the Gaudin model recovers the U(1) symmetry. Furthermore,it is found that the contribution of those Bethe roots to the Bethe states is a nonzero constant. This fact enables us to recover the Bethe states of the Gaudin model with the U(1) symmetry. These results provide a basis for the further study of the thermodynamic limit, correlation functions, and quantum dynamics of the Gaudin model.  相似文献   

4.
Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii-Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii-Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.  相似文献   

5.
We investigated the quantum phase transition occurred in one-dimensional quantum Heisenberg XYZ model with Dzyaloshinskii–Moriya interaction via the infinite matrix product state representation with the infinite time evolving block decimation method. Entanglement entropy and local order parameter in and near the transition point are given. Scaling relation plays crucial roles on identifying a quantum system with a physically different phase. The scaling relation of the entanglement entropy, local order parameter and finite correlation length with the truncation dimension are also obtained. All the interesting results give a theoretical justification for the high accuracy of infinite time evolved block decimation algorithm which works in the thermodynamical limit.  相似文献   

6.
Quantum correlations measured by measurement-induced disturbance (MID) in a two-qubit Heisenberg XY spin model with Dzialoshinskii-Moriya (DM) interaction under intrinsic decoherence are investigated. MID is studied un-der various circumstances and the influences of the external dependencies on the final quantum state which has stable MID are discussed. Two kinds of initial quantum states are considered as well as different conclusions. MID appears to decay periodically during the processing of intrinsic decoherence; both DM interaction and intrinsic decoherence have a negative impact on the correlations. The MID of the stable state depends on several factors, except the parameter of the intrinsic decoherence. Moreover, we find a special initial state that is able to maintain the maximum quantum correlations during the processing of intrinsic decoherence.  相似文献   

7.
We theoretically investigate the exact soliton solutions of anisotropic ferromagnetic wires with Dzyaloshinskii–Moriya interaction. For example, we give the bright and black soliton solutions. From these results we find that the Dzyaloshinskii–Moriya interaction affects the existence region of soliton, spin-wave transport, and soliton dynamic properties. As the Dzyaloshinskii–Moriya interaction grows, the soliton width is widened, which provides a way to control the soliton dynamics.  相似文献   

8.
In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state.  相似文献   

9.
10.
The three-dimensional XY model with bilinear–biquadratic exchange interactions J and J′, respectively, has been studied by Monte Carlo simulations. From the detailed analysis of the thermal variation of various physical quantities, as well as the order parameter and energy histogram analysis, the phase diagram including two different ordered phases has been determined. There is a single phase boundary from a paramagnetic to a dipole–quadrupole ordered phase, which is of second order in a high J/J′ ratio region, changing to a first-order one for 0.35⩽J/J′⩽0.5. Below J/J′=0.35 there are two separate transitions: the first one to the quadrupole long-range order (QLRO) phase at higher temperatures, followed by another one to the dipole–quadrupole long-range order (DLRO) phase at lower temperatures. The finite-size scaling analysis yields values of the critical exponents for both the DLRO and QLRO transitions close to the values for the conventional XY model which includes no biquadratic exchange.  相似文献   

11.
In this work, we study the quantum steering in two-qubit Heisenberg models with Dzyaloshinskii–Moriya(DM)interaction and an external magnetic field. We find that the steerable weight(SW) and the critical temperature where SW → 0 can be enhanced by the DM interactions. In the special case where the magnetic field is vanishing and the two spins are ferromagnetically coupled, the DM interaction can tune the zero-temperature SW from zero to a finite value. In addition to the SW, some other measurements used to identify the quantum entanglement and quantum correlations are investigated, i.e., the concurrence, the quantum discord, and the robustness of coherence. In the strong magnetic field limit,our results show that the SW is dramatically different from the other measurements.  相似文献   

12.
The topological magnon insulator on a honeycomb lattice with Dzyaloshinskii–Moriya interaction(DMI) is studied under the application of a circularly polarized light.At the high-frequency regime, the effective tight-binding model is obtained based on Brillouin–Wigner theory.Then, we study the corresponding Berry curvature and Chern number.In the Dirac model, the interplay between a light-induced handedness-dependent effective DMI and intrinsic DMI is discussed.  相似文献   

13.
14.
The spin-1 ±J Ising model with uniform biquadratic couplings on a simple cubic lattice is studied by the Monte Carlo simulation using the non-equilibrium relaxation method. The reentrant phase transition induced by competition between the bilinear and biquadratic couplings is eliminated gradually with increasing randomness of bilinear couplings and disappears entirely in the strong random system. The dynamic exponent of ferromagnetic transition shows non-universal behavior with changing randomness, while this behavior is not observed in the case of staggered quadrupolar transition.  相似文献   

15.
16.
Self-organized long-range order structures, such as stripe domains and magnetic skyrmion lattices, are formed by the competition between ferromagnetic exchange interaction and Dzyaloshinskii–Moriya (DM) interaction. We investigated the properties of the magnetic structures generated by a DM interaction under the influence of anisotropy or magnetic dipole interaction, by performing Monte-Carlo simulated annealing. We constructed phase maps in external-field and anisotropy space to study the effect of anisotropy or dipole interaction on the phase boundaries between the magnetic structures. The simulation results show that the phase boundaries are sensitive to perpendicular anisotropy and that the skyrmion lattice region in phase space is extended under easy-plane anisotropy. The effect of the long-range dipole interaction was studied and was found to stabilize the skyrmion lattice phase and reduce the size of the magnetic structures.  相似文献   

17.
Within the effective mass approximation we theoretically studied the electronic properties of CdSe/ZnS and ZnS/CdSe core-shell quantum dots surrounded by wide-gap dielectric materials. The finite element method is used to obtain the lowest impurity levels and the carrier spatial distribution within the dot. We found that in these zero-dimensional semiconductor structures the electron energy is sensitively dependent on the dielectric constants of the embedding and on the heterostructure geometry. The influence of polarization charges on the binding energy of hydrogenic impurities off-center located is also investigated. The results suggest that in dielectrically modulated nanodots the donor energy can be tuned to a large extent by the structure design, the impurity position and a proper choice of the dielectric media.  相似文献   

18.
This paper investigates the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of Dzyaloshinskii-Moriya interaction.The time evolution of the concurrence is studied for the initial pure entangled states cos θ |00 + sin θ |11 and cos |01 + sin |10 at zero temperature.The influences of Dzyaloshinskii-Moriya interaction D,anisotropic parameter and environment coupling strength γ on entanglement evolution are analysed in detail.It is found that the effect of noisy environment obviously suppresses the entanglement evolution,and the Dzyaloshinskii-Moriya interaction D acts on the time evolution of entanglement only when the initial state is cos |01 + sin |10.Finally,a formula of steady state concurrence is obtained,and it is shown that the stable concurrence,which is independent of different initial states and Dzyaloshinskii-Moriya interaction D,depends on the anisotropic parameter and the environment coupling strength γ.  相似文献   

19.
We investigate the anisotropic Heisenberg XXZ spin chain that possesses Dzyaloshinskii–Moriya (DM) interaction and discuss the behavior characteristics of the thermal quantum correlation (thermal quantum discord and thermal quantum entanglement) in the inhomogeneous magnetic field that is manipulated by sinusoidal wave. The results indicate that the DM interaction strengthens the thermal correlation such that the stronger the DM interaction is, the more obvious it strengthens. We can control the thermal correlation through externally adding an inhomogeneous magnetic field that a relative stable range can be formed where the thermal quantum correlation is almost foreign to the coupling coefficient of z-direction spin, thereby the thermal quantum correlation is controlled and enhanced.  相似文献   

20.
任学藻  姜道来  丛红璐  黎雷 《中国物理 B》2010,19(9):90309-090309
This paper investigates the influences of atom-field coupling and dipole-dipole coupling for atoms on the entanglement between two atoms by means of concurrence. The results show that the sudden death occurs when the atom-field coupling is strong enough, and the collapse and the revival appear when the dipole-dipole interaction is strong enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号