首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

2.
使用MOCVD在图形化Si衬底上生长了含V形坑的InGaN/GaN蓝光LED。通过改变生长温度,生长了禁带宽度稍大的载流子限制阱和禁带宽度稍小的发光阱,研究了两类量子阱组合对含V形坑InG aN/GaN基蓝光LED效率衰减的影响。使用高分辨率X射线衍射仪和LED电致发光测试系统对LED外延结构和LED光电性能进行了表征。结果表明:限制阱靠近n层、发光阱靠近p层的新型量子阱结构,在室温75 A/cm~2时的外量子效率相对于其最高点仅衰减12.7%,明显优于其他量子阱结构的16.3%、16.0%、28.4%效率衰减,且只有这种结构在低温时(T≤150 K)未出现内量子效率随电流增大而剧烈衰减的现象。结果表明,合理的量子阱结构设计能够显著提高电子空穴在含V形坑量子阱中的有效交叠,促进载流子在阱间交互,提高载流子匹配度,抑制电子泄漏,从而减缓效率衰减、提升器件光电性能。  相似文献   

3.
Strain-compensated InGaN quantum well (QW) active region employing tensile AlGaN barrier is analyzed. Its spectral stability and efficiency droop for dual-blue light-emitting diode (LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LED based on stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate. It is found that the optimal performance is achieved when the Al composition of strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW. The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW that can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

4.
Light emitting diodes (LEDs) based on GaN/InGaN material suffer from efficiency droop at high current injection levels. We propose multiple quantum well (MQW) GaN/InGaN LEDs by optimizing the barrier thickness and high–low–high indium composition to reduce the efficiency droop. The simulation results reflect a significant improvement in the efficiency droop by using barrier width of 10 nm and high–low–high indium composition in MQW LED.  相似文献   

5.
The optical properties of AlGaN-based quantum well(QW) structure with two coupled thin well layers are investigated by the six-by-six K-P method.Compared with the conventional structure,the new structure,especially the one with lower Al-content in the barrier layer,can enhance the TE-/TM-polarized total spontaneous emission rate due to the strong quantum confinement and wide recombination region.For the conventional QW structure,the reduction of well thickness can lead the degree of polarization(DOP) to decrease and the internal quantum efficiency(IQE) to increase.By using the coupled thin well layers,the DOP for the structure with high Al-content in the barrier layer can be improved,while the DOP will further decrease with low Al-content in the barrier layer.It can be attributed to the band adjustment induced by the combination of barrier height and well layer coupling.The IQE can also be further enhanced to 14.8%-20.5% for various Al-content of barrier layer at J=100 A/cm~2.In addition,the efficiency droop effect can be expected to be suppressed compared with the conventional structure.  相似文献   

6.
刘木林  闵秋应  叶志清 《物理学报》2012,61(17):178503-178503
InGaN/GaN基阱垒结构LED当注入的电流密度较大时, LED的量子效率随注入电流密度增大而下降, 即droop效应.本文在Si (111)衬底上生长了 InGaN/GaN 基蓝光多量子阱结构的LED,通过将实验测量的光电性能曲线与利用ABC模型模拟的结果进行对比, 探讨了droop效应的成因.结果显示:温度下降会阻碍电流扩展和降低空穴浓度, 电子在阱中分布会越来越不平衡,阱中局部区域中因填充了势能越来越高的电子而溢出阱外, 从而使droop效应随着温度的降低在更小的电流密度下出现且更为严重, 不同温度下实验值与俄歇复合模型模拟的结果在高注入时趋势相反.这此结果表明,引起 droop效应的主因不是俄歇非辐射复合而是电子溢出,电子溢出的本质原因是载流子在阱中分布不均衡.  相似文献   

7.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

8.
The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.  相似文献   

9.
宋晶晶  张运炎  赵芳  郑树文  范广涵 《发光学报》2012,33(12):1368-1372
采用软件理论分析的方法分析了InGaN/AlGaN量子阱数量变化对发光二极管内量子效率、电子空穴浓度分布、载流子溢出产生的影响。分析结果表明:量子阱的个数不是越多越好,LED的光学性质和量子阱的个数并不成线性关系。量子阱个数太少时,电流溢出现象较明显;而当量子阱个数太多时,极化现象明显,且会造成材料浪费。因此应根据工作电流选择合适的量子阱个数。  相似文献   

10.
为了深入理解近紫外波段NEA GaN阴极的光谱响应特性, 在超高真空系统中对MOCVD生长的不同发射层厚度和掺杂浓度的三个样品进行激活实验, 并在线测试样品光谱响应. 利用反射式GaN阴极量子效率公式和最小二乘法对入射光波长为0.25—0.35 μ之间的 阴极响应量子效率实验数据进行拟合, 分别得到后界面复合速率和拟合直线L的斜率, 并使用量子效率公式对入射光波长为0.35 μ时的反射式GaN阴极光谱响应量子效率进行仿真. 结果表明, 后界面复合速率和直线v的斜率都能很好地反映GaN阴极的响应性能, 当GaN阴极后界面复合速率小于105 cm/s, 发射层的厚度取0.174—0.212 μ时, 阴极光谱响应性能最好. 关键词: 反射式GaN 势垒 最小二乘法 后界面缺陷  相似文献   

11.
Within the framework of effective-mass approximation, the effects of a laser field on the ground-state donor binding energy in zinc-blende (ZB) GaN/AlGaN quantum well (QW) have been investigated variationally. Numerical results show that the donor binding energy is highly dependent on QW structure parameters and Al composition in ZB GaN/AlGaN QW. The laser field effects are more noticeable on the donor binding energy of an impurity localized inside the QW with small well width and low Al composition. However, for the impurity located in the vicinity of the well edge of the QW, the donor binding energy is insensible to the variation of Al composition, well width and laser field intensity in ZB GaN/AlGaN QW. In particular, the competition effects between laser field and quantum confinement on impurity states have also been investigated in this paper.  相似文献   

12.
刘扬  杨永春 《中国物理 B》2016,25(5):58101-058101
The effects of Mg doping in the quantum barriers(QBs) on the efficiency droop of GaN based light emitting diodes(LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells(QWs), both may reduce the efficiency droop. However,heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop.  相似文献   

13.
时强  李路平  张勇辉  张紫辉  毕文刚 《物理学报》2017,66(15):158501-158501
GaN/In_xGa_(1-x)N型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化——In组分梯度递增以及渐变、GaN/In_xGa_(1-x)N界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/In_xGa_(1-x)N型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中In_xGa_(1-x)N层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/In_xGa_(1-x)N界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/In_xGa_(1-x)N型最后一个量子势垒中In_xGa_(1-x)N及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而In_xGa_(1-x)N和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.  相似文献   

14.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

15.
Two ultraviolet InGaN/GaN light emitting diodes (LEDs) with and without InGaN underlying layer beneath the multiple quantum wells (MQWs) were grown by metal-organic vapor phase epitaxy. Based on the photoluminescence excitation measurements, it was found that the Stokes shift of the sample with a 10-nm-thick In0.1Ga0.9N underlying layer was about 64 meV, which was smaller than that of the reference sample without InGaN underlying layer, indicating a reduced quantum-confined Stark effect (QCSE) due to the decrease of the piezoelectric polarization field in the MQWs. In addition, by fitting the photon energy dependence of carrier lifetime values, the radiative recombination lifetime of the sample with and without InGaN underlying layer were obtained about 1.22 and 1.58 ns at 10?K, respectively. The shorter carrier lifetime also confirmed that the QCSE in the MQWs was weakened after inserting the InGaN underlying layer. In addition, although the depth of carrier localization in the sample with InGaN underlying layer became smaller, the nonradiative recombination centers (NRCs) inside it decreased, and thus suppressed the nonradiative recombination process significantly according to the electroluminescence measurement results. Compared to the reference sample, the efficiency droop behavior was delayed in the sample with InGaN underlying layer and the droop effect was also effectively alleviated. Therefore, the enhanced light-emission efficiency of ultraviolet InGaN/GaN MQW LEDs could be attributed to the decrease of QCSE and NRCs.  相似文献   

16.
In this study, an InGaN lighting-emitting diode(LED) containing GaN/AlGaN/GaN triangular barriers is proposed and investigated numerically. The simulation results of output performance, carrier concentration, and radiative recombination rate indicate that the proposed LED has a higher output power and an internal quantum efficiency, and a lower efficiency droop than the LED containing conventional GaN or AlGaN barriers. These improvements mainly arise from the modified energy bands, which is evidenced by analyzing the LED energy band diagram and electrostatic field near the active region.The modified energy bands effectively improve carrier injection and confinement, which significantly reduces electron leakage and increases the rate of radiative recombination in the quantum wells.  相似文献   

17.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

18.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

19.
周利刚  沈文忠 《物理学报》2009,58(10):6863-6872
研究了GaN/AlGaN异质结构中的双带(中、远)红外探测及光子频率上转换特性.通过光致发光光谱确认GaN/AlGaN探测器结构中AlGaN本征层的Al组分,讨论了不同Al组分GaN/AlGaN异质结的导带带阶界面功函数差.在拟合单周期GaN/AlGaN探测器中红外和远红外波段响应谱的基础上,研究多周期GaN/AlGaN探测器与GaN/AlGaN发光二极管集成结构的中红外和远红外光子频率上转换效率与GaN发射层厚度、AlGaN本征层厚度、紫光光子出射效率、内量子效率、空间频率和发射层掺杂浓度间的关系,优化 关键词: 双带红外探测 光子频率上转换 响应谱 GaN/AlGaN  相似文献   

20.
张运炎  范广涵  章勇  郑树文 《物理学报》2011,60(2):28503-028503
采用软件理论分析的方法对p型及n型掺杂的GaN间隔层在InGaN/GaN多量子阱双波长发光二极管中对光谱调控作用进行模拟分析.分析结果表明,掺杂的GaN间隔层的引入,可以有效地控制各阱中的电子或空穴浓度,很好地解决了双波长发光二极管中两种阱发光强度不均的问题,并且通过控制阻挡层的厚度,可以调控两种阱中的载流子浓度,从而调控发光峰的相对强度.这些可以归因于掺杂GaN间隔层对电子或空穴的阻挡作用. 关键词: GaN 间隔层 数值模拟 双波长发光二极管  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号