首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface acoustic wave (SAW) chemical agents sensors usually operate in the oscillator feed-back configuration. It converts a molecular interactions between SAW surface and chemisensitive layer placed on it to relative easy to measurement electrical quantities (most often it is an operating frequency or phase change). Although in the SAW sensors the key role play chemisensitive coatings but nearly as important as the coatings are electronic circuits cooperating with SAW devices. The results of theoretical calculations show that the SAW sensors operating frequency increasing is profitable from the sensitivity point of view. Unfortunately, an advantageous sensitivity-frequency dependence is hard to apply because of decreasing of SAW device dimensions and thereby the area of the chemisensitive layer with the operating frequency. The smaller area of the layer, the smaller amount of detecting gas particles sorbed and the weakest response of the sensor. It is possible to avoid the problem using special constructions of SAW stabilised oscillators. In the paper such constructions have been described.  相似文献   

2.
王文  梅盛超  薛蓄峰  梁勇  潘勇  雷刚 《应用声学》2018,37(5):758-764
将钯基材料对氢气分子的特异选择性吸附能力与声表面波的快速响应特点相结合,可实现一种快速、高灵敏和低功耗的氢气检测与报警技术。传感器由双通道差分式振荡器与沉积在传感器件表面的声表面波传播路径上的钯基气敏薄膜组成。为提升传感器响应速度,该文探讨了采用钯镍合金薄膜与钯铜纳米线作为气敏材料的氢气传感器响应特性,通过对气敏材料制备方法及参数的优化,研制了两种沉积不同钯基气敏材料的氢气传感器件,并对其性能进行了评测。实验测试结果表明:钯铜纳米线气敏材料由于具有大体积表面积比和多孔结构,大幅提高了SAW氢气传感器响应速度,针对浓度为10%、4%以及0.5%的氢气响应时间可达~2s。  相似文献   

3.
Yan Wang 《中国物理 B》2022,31(3):30701-030701
The three-dimensional (3D) finite element (FE) simulation and analysis of Love wave sensors based on polyisobutylene (PIB) layers/SiO$_{2}$/ST-90$^\circ$X quartz structure are presented in this paper, as well as the investigation of coupled resonance effect on the acoustic properties of the devices. The mass sensitivity of the basic Love wave device with SiO$_{2}$ guiding layers is solved analytically. And the highest mass sensitivity of 128 m$^{2}$/kg is obtained as $h_{\rm s}/\lambda =0.175$. The sensitivity of the Love wave sensors for sensing volatile organic compounds (VOCs) is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH$_{2}$Cl$_{2}$, CHCl$_{3}$, CCl$_{4}$, C$_{2}$Cl$_{4}$, CH$_{3}$Cl and C$_{2}$HCl$_{3}$ with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz, 85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of the sensitive material on the characteristics of SAW sensors is also studied. By taking account of the viscoelasticity of the PIB layers, the sensitivities of the SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of the Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C$_{2}$Cl$_{4}$, making it an ideal selection for gas sensing applications.  相似文献   

4.
为改善气体传感器性能,通过器件优化设计获得了一种应用于气体传感器的具有低损耗、高品质因子(Q)的单模式两端对声表面波(SAW)谐振器。该谐振器由两个换能器、分置于换能器两边的短路栅反射器以及在换能器之间分布的用于敏感膜镀膜的约2.5mm金属薄层构成。谐振器采用铝/金双层电极以降低测试气体环境的腐蚀影响。利用经典耦合模(COM)理论对器件性能进行了仿真以提取优化的结构设计参数。基于仿真结果,实验研制了基于300MHz频率的新型铝/金电极SAW两端对谐振器,测试结果显示所研制器件具有较低损耗(〈7dB),较高Q值(-3000)以及单一谐振模式的特点,并且,以所研制的新型谐振器为频率控制单元的谐振器型振荡器表现出良好的频率稳定度(t15Hz/h),这对于改善气体传感器的检测下限及稳定性等性能指标具有重要意义。   相似文献   

5.
Simple and efficient surface acoustic wave(SAW)two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing.It was composed of two shorted grating reflectors and adjacent intedigital transducers(IDT),and an active metal film in the cavity between the IDTs for the sensitive film coating.The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments.Excellent device performance as low insertion loss,high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness,cavity length and acoustic aperture.Prior to fabrication,the coupling of modes(COM)model was performed for device simulation to determine the optimal design parameters.The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of~6.5 dB and loaded Q factor in the 3000 range.Using the fabricated resonator as the feedback element,a dualresonator-oscillator with excellent frequency stability(0.1 ppm)was developed and evaluated experimentally,and it is significant for performance improvement of SAW gas sensor.  相似文献   

6.
7.
提出了一种基于热声转换的高灵敏声表面波(SAW)电压传感机制并开展实验验证。从传热角度以及微扰理论出发建立了基于热声转换机制的SAW电压传感理论模型,探索了结构参数以及环境因素对SAW电压传感器灵敏度的影响规律。为了验证理论模型,在Y切石英基底上同芯片集成设计MEMS微型加热器与200 MHz声表面波器件以制备SAW电压传感器件,并搭建电压测试平台对传感器件开展性能测试。实验结果表明所制备的SAW传感器件电压与频率响应之间具有二次线性关系且在室温(20℃)下具有与理论相近的电压灵敏度(22.4 kHz/V),此外实验获得的环境温度对电压灵敏度的影响规律与理论相符。基于热声转换机制的SAW电压传感器能够显著的提高电压检测灵敏度。  相似文献   

8.
Zinc oxide (ZnO) thin films were deposited onto a polycrystalline (poly) 3C-SiC buffer layer for surface acoustic wave (SAW) ultraviolet (UV) sensing using a magnetron sputtering system. X-ray diffraction (XRD) and photoluminescence (PL) spectra showed that the ZnO film grown on 3C-SiC/Si had a dominant c-axis orientation, a lower residual stress, and higher intensity of luminescence at 380 nm of ZnO thin film. The SAW resonator UV detector were fabricated on ZnO/Si structures with a 3C-SiC buffer layer. The SAW resonator exposed under UV illumination had a linear response with sensitivity of 85 Hz/(μW/cm2) in ZnO/3C-SiC/Si structures, as compared to 25 Hz/(μW/cm2) in ZnO/Si structures with UV intensity varied until 600 μW/cm2.  相似文献   

9.
A promising approach to apply the Love wave concept to commercially available low-loss surface acoustic wave (SAW) devices of the type Murata SAF 380 is presented. Thin wave-guiding layers of variable thickness are coated on the piezoelectric substrate of the devices. Two different layer materials were used: sputtered SiO2 and a new polymer in this field, parylene C (poly-[2-chloro-p-xylylene]). Insertion loss, resonance frequency, frequency changes during protein precipitation and noise of the devices are discussed as a function of the thickness of the wave-guiding layer. It is demonstrated that the application of an optimized wave-guiding layer increases the sensitivity. When using SiO2 as wave-guiding layer, an optimum layer thickness of 4 μm leads to a detection limit of 1.7 pg/mm2. Therefore, the detection limit is improved by factor 7.7 as compared to uncoated SAW devices. Parylene-coated devices reach a detection limit of 2.9 pg/mm2 at an optimum layer thickness of 0.5 μm. This corresponds to an improvement by factor 4.3. As the SAW devices used in this study are commercially available at low costs, applying appropriate wave-guiding layers permits an application as chemical or biochemical sensors with excellent sensitivities. Moreover, parylene-coated devices combine the sensitivity increase by excitation of Love waves with an excellent protective effect against corrosive attacks by the surrounding medium. Therefore, these sensors are most suitable for biosensing in conducting buffer solutions.  相似文献   

10.
Development of SH-SAW sensors for underwater measurement   总被引:3,自引:0,他引:3  
Kwon Y  Roh Y 《Ultrasonics》2004,42(1-9):409-411
We developed SH (shear horizontal) surface acoustic wave (SAW) sensors to detect protein molecules in liquid solutions applying a particular antibody thin film on the delay line of transverse SAW devices. The antibody investigated was human-immuno-globulin G (HigG) to hold the antigens (anti-HigG) in the protein solution to be measured. The sensor showed stable response to the mass loading effects of the anti-HigG molecules with the sensitivity up to 10.8 ng/ml/Hz.  相似文献   

11.
MOCVD法生长SAWF用ZnO/Diamond/Si多层结构   总被引:4,自引:2,他引:4  
使用等离子体辅助MOCVD系统在金刚石,硅衬底上成功地制备了氧化锌多层薄膜材料,通过两步生长法对薄膜质量进行了优化。XRD测试显示优化后的样品具有c轴的择优取向生长,PL谱测试表明样品经优化后不仅深能级发射峰消失,同时紫外发射峰增强。对优化后的样品的表面测试显示出较低的表面粗糙度。比较氧化锌多层薄膜结构的声表面波频散曲线,ZnO薄膜声表面滤波器受膜厚和衬底材料的影响较大。当ZnO薄膜较薄时,在它上面的传播速度将与衬底上的传播速度接近,与其他衬底上生长的薄膜相比,以金刚石这种快声速材料为衬底的ZnO多层薄膜结构,声表面波滤波器的中心频率将提高1倍左右。  相似文献   

12.
《Current Applied Physics》2014,14(4):608-613
This paper reports Sezawa-mode surface acoustic wave (SAW) devices with via-isolated cavity to construct the allergy biosensor. To fabricate Sezawa-mode SAW devices, the RF magnetron sputtering method for the growth of piezoelectric ZnO thin films are adopted and influences of the sputtering parameters are investigated. The optimal substrate temperature of 300 °C, RF power of 120 W and sputtering pressure of 2 Pa were used to deposit piezoelectric ZnO films with a smooth surface, uniform grain size and strongly c-axis-orientated crystallization. A back-etched SAW resonator is used in this study. The wet etching of (100)-oriented silicon wafers is used to form a back-side cavity which is critical to the formation of a hopper cavity for holding bio-analytes. The remaining membrane structure silicon thickness was 25 μm. In this report, the chrome (Cr, 12 nm)/gold (Au, 66 nm) layer was initially deposited onto the sensing area of SAW devices as the binding layer for biochemical sensor. The resonance frequency of the Sezawa-mode SAW device is 1.497 GHz. The maximum sensitivity of the Sezawa-mode is calculated to be 4.44 × 106 cm2/g for human immunoglobulin-E (IgE) detection. The stability for human IgE detection is calculated to be 80% and the variation of the stability ±3% was obtained after several tests.  相似文献   

13.
张淑仪  周凤梅  范理 《应用声学》2008,27(6):413-418
本文简要介绍多种表面声波传感器的结构、特点、应用及其研究进展概况。表面声波传感器依其波型分类,主要包括瑞利波、水平切变声板波、乐甫波和兰姆波传感器;其应用领域根据作用特点大致可分为物理传感器和化学、生物传感器,前者较易实现,后者特异性强,需要针对具体情况作更细致研究。由于表面声波的传播速度和相位对周围环境的参量变化极为敏感,因此有关传感器具有很高的灵敏度和广泛的应用领域。  相似文献   

14.
通过使用化学气相沉积法,成功制备出超长、大尺寸的Sb掺杂ZnO微米线.基于非平衡电桥原理,利用单根Sb掺杂ZnO微米线作为非平衡电桥的一个桥臂,制作出了可以在室温环境下工作的气敏传感器原型器件.结果表明:室温下测得该传感器对20,50,100和200 ppm(1 ppm=10^-6)不同浓度的丙酮及乙醇气体的响应-恢复曲线均呈现为矩形形状,在空气及被测气体中均有稳定的电流值,并随着探测气体浓度的增大,器件的响应值也在逐渐增加.此外,还发现器件对丙酮气体具有更好的选择性,当丙酮气体浓度为200 ppm时,该传感器的响应时间为0.2 s,恢复时间为0.3 s,响应度高达243%.通过与普通电导式气敏传感器对比发现,采用这种非平衡电桥结构传感器可以明显地提高响应度,使响应和恢复时间更快.此外,还研究了器件的气体探测机理.  相似文献   

15.
《Current Applied Physics》2020,20(7):904-910
This paper presents an improvement of the acoustoelectric effect by sensitivity and response of ultraviolet (UV) sensors by changing the argon/oxygen ratio. The acoustoelectric sensor is a delay-line type with a center frequency of 240.2625 MHz and fabricated on a piezoelectric substrate. Aluminum thin films were deposited as interdigitated transducers and patterned, and the ZnO thin film was deposited as a UV sensing layer by controlling the ratio of argon and oxygen with an RF magnetron sputtering. By increasing the oxygen partial pressure during ZnO deposition, the photoconductivity increased by 6.5 times, thereby increasing the frequency change related to the sensitivity of the sensor. The sensitivity to UV light was 110.4 Hz cm2/μW under an argon/oxygen ratio of 6:4, which is an increase of 5.1 times from 21.76 Hz cm2/μW obtained under a ratio of 10:2. In addition, the response and recovery times were improved by 2.85 times and 3.02 times, respectively.  相似文献   

16.
This paper describes the characteristics of surface acoustic wave (SAW) ultraviolet (UV) sensors fabricated from a ZnO thin film using the third harmonic mode. A ZnO thin film was used as an active layer for UV detection, and a piezoelectric layer was sputtered using magnetron sputtering. The X-ray diffraction (XRD) and photoluminescence (PL) spectra showed that the ZnO sputtered onto Si(100) was highly (002)-oriented and had good optical properties. The two-port SAW resonator was based on an inter-digital transducer (IDT)/ZnO/Si structure and was fabricated and exposed under UV light at a wavelength of 380 nm. As a result, under a UV intensity of 3 mW/cm2, the SAW UV sensor was greatly shifted by 400 kHz at the third harmonic mode compared to a frequency shift of 10 kHz in the fundamental mode.  相似文献   

17.
从传感器核心元件及无线测温雷达的优化设计出发,研制了一种集成电子标签的高性能声表面波(SAW)无线无源测温系统。基于耦合模(COM)理论对作为传感元件的反射型SAW延迟线进行了优化设计,基于仿真结果,实验研制了采用YZ LiNbO_3石英基片的434 MHz反射型SAW延迟线,该器件是由一个换能器与8个反射器构成的反射型延迟线,其中3个反射器用于温度检测,另外5个反射器则用于采用相位编码的电子标签。测试结果显示所研制的反射型SAW延迟线具有良好的时域特性与较高的信噪比,并与理论仿真结果极为吻合。设计并研制了采用步进调频(FSCW)模式的测温雷达,利用高精度高低温箱对所研制的无线无源SAW测温系统进行了无线测试,系统表现出良好的线性特性,测温准确度达到了士1℃以内。   相似文献   

18.
过低的灵敏度性能一直是声表面波(SAW)陀螺仪的瓶颈问题,对此,提出了一种结合金属点阵用以改善陀螺效应的新型行波模式SAW陀螺仪,并对其性能进行了评价。该结构由双延迟线型振荡器构成,两延迟线平行且反向制作于同一压电基片上,在延迟线的声传播路径上分布铜点阵。结合层状介质中声波传输特性的研究方法分析了两种压电晶体材料、不同金属点阵膜厚对传感器响应的影响,从而为确定陀螺仪的设计奠定理论基础。基于理论计算结果,研制了以128°YX LiNbO3及X-112°Y LiTaO3为压电基片,铜点阵厚度分别为33000 Å,6000 Å,9000 Å的95 MHz声表面波陀螺仪。为改善振荡器的频率稳定性,延迟线采用了具有梳状结构的单相单向换能器结构。振荡器的测试频率稳定度达到了±5 Hz/h。利用精确速率转台对所研制的SAW陀螺仪性能进行了测试。测试结果表明:采用机电耦合系数较高的128°YX LiNbO3基片并增加金属点阵厚度均能有效提高陀螺仪的检测灵敏度,所获得的最大检测灵敏度为2.7 Hz/(deg/s)。   相似文献   

19.
将声表面波技术的快速响应特点与磁致伸缩薄膜的高磁敏特点相结合,可实现一种快速、高灵敏、稳定可靠的新型电流检测技术。传感器由双通道差分式振荡器与沉积在传感通道器件表面的声传播路径上的磁致伸缩薄膜组成。该文基于分层介质中声传播理论及磁致伸缩效应,对声表面波电流传感机理进行了分析,以实现对传感器结构的优化设计。实验研制了采用铁钴(FeCo)薄膜的声表面波电流传感器,测试结果表明,该传感器具有快速响应和高灵敏特点。为抑制磁致伸缩薄膜自身的剩磁效应所带来的高磁滞误差,采用的有效途径是将沉积的磁致伸缩薄膜进行图形化设计。实验结果表明,采用栅阵化FeCo薄膜结构的传感器表现出更高检测灵敏度、更好线性及更低的磁滞误差。  相似文献   

20.
We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K2) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号