首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
InFeP layers are prepared by ion implantation of InP with 100-keV Fe+ ions to a dose of 5 ×10^16 cm-2 and investigated by optical, magnetic, and ion beam analysis measurements. Photoluminescence measurements show a deep-level peak at 1.035 eV due to Fe in InP and two exciton-related luminescences at 1.426 eV and 1.376 eV in the implanted samples annealed at 400℃. Conversion electron Mossbauer spectroscopy reveals a doublet corresponding to Fe3+ ions in the indium sites. Atomic force microscopy and magnetic force microscopy show that magnetic clusters are formed in the annealing process. The magnetization-field hysteresis loops show ferromagnetic properties persisting up to room temperature with a coercive field of 100 0e (10e = 79.5775 A-m-1), saturation magnetization of 4.35 × 10-5 emu, and remnant magnetization of 4.4× 10 6 emu.  相似文献   

2.
Microwave magnetic properties are studied for rhombohedral structure Nd2Fe17N3-δ with planar magnetic anisotropy. Its resin composites show the permeability μ'0 = 4.15 at low frequency, the natural resonance frequency fT = 1.71 GHz and the resonance bandwidth 6.66 GHz. The calculated static permeability of Nd2Fe17N3-δ reaches 133. The microwave magnetic properties are determined by the c-axis anisotropy field, basal plane anisotropy field and high saturation magnetization. Based on microwave measurement and theoretical fitting on complex permeability spectra, Nd2Fe17N3-δ may be a promising microwave absorber with bandwidth wider than traditional hexaferrites materials in GHz ranges.  相似文献   

3.
Binary amorphous Fe89.7P10.3 alloy nanowire arrays in been fabricated in an anodic aluminium oxide template diameter of about 40nm and length of about 3μm have by electrodeposition. Magnetic properties of the samples are investigated by mean of vibrating sample magnetometer, transmission Mossbauer spectroscopy and conversion electron Mossbauer spectroscopy at room temperature. It is found that the nanowire arrays have obvious perpendicular magnetic anisotropy, and are ferromagnetic at room temperature, with its Mossbauer spectra consisting of six broad lines. The average angles between the Fe and 28° at the end of the amorphous Fe89.7P10.3 alloy magnetic moment and the wire axis are about 14°inside nanowire arrays, respectively. The magnetic behaviour is decided by the shape anisotropy and the dipolar interaction between wires. In addition, the magnetic moments distribution is theoretically demonstrated by using the symmetric fanning mechanism of the spheres chain model.  相似文献   

4.
In this study, the effects of doping by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions on dielectric and infrared properties of SrTiO3 (STO) single crystals are investigated. It is well known that doping of the SrTiO3 can change the dielectric properties of the STO from an insulator to an n-type semiconductor, and even to a metallic conductor. Dielectric and infrared (IR) properties of the undoped STO and doped STO single crystals are analyzed using dielectric spectroscopy (80 kHz-5 MHz), transmission (200 cm^-1-4000 cm^-1), and reflection spectroscopy (50 cm^-1-2000 cm^-1). It is found that doping by the 3d ions reduces the value of dielectric permittivity, but the trend of temperature dependence of the dielectric permittivity remains almost unchanged. On the other hand, dielectric spectroscopy measurements for samples doped by 4f ions show the anomalous behaviors of the dielectric permittivity at temperatures around the temperature of the structural phase transition. There are two fractures of temperature dependences of inverse dielectric permittivity εr^-1 (T). Transmittance spectroscopy measurements show that there are differences in the shape of the spectrum in the mid-IR region between the undoped STO and the one doped by 4f ions. The differences in the reflectance spectrum between the STO:Nd and STO are analyzed in detail.  相似文献   

5.
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylor-expansion method. There is a weakly nonlinear relation between electric displacement D and electric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.  相似文献   

6.
The Fe–Cu–Nb–Si–B alloy nanocomposite containing two ferromagnetic phases(amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy(HRTEM) images show the coexistence of these two phases. It is found that Fe–Si nanograins are surrounded by the retained amorphous ferromagnetic phase. M¨ossbauer spectroscopy measurements show that the nanophase is the D03-type Fe–Si phase, which is employed to find the atomic fractions of resonant57 Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe–Cu–Nb–Si–B nanocomposite are measured in the frequency range of 0.5 GHz–10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than-10 dB in a frequency band of 1.93 GHz–3.20 GHz.  相似文献   

7.
The effects of the addition of H3BO3 on the microstructure, phase formation, and microwave dielectric properties of (Zn0.TMg0.3)TiO3 ceramics sintered at temperatures ranging from 890 ℃ to 950 ℃ are investigated. H3BO3 as a sintering agent can effectively lower the sintering temperature of ZMT ceramics below 950 ℃due to the liquid-phase effect. The microwave dielectric properties are found to strongly correlate with the amount of H3BO3. With the increase in H3BO3 content, the dielectric constant (er) monotonically increases, but the quality factor (Q x f) reaches a maximum at 1 wt% H3BO3, and the apparent density of ZMT ceramics with H3BO3〉 1 wt% gradually decreases. At 950 ℃, the ZMT ceramics with 1% H3BO3 exhibit excellent microwave dielectric properties: er = 19.8, and Q x f -- 43800 GHz (8.94 GHz).  相似文献   

8.
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton-Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.  相似文献   

9.
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed highpressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton–Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the external static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.  相似文献   

10.
Wedge-shaped left-handed materials (LHMs) with split ring resonators and wires structures are fabricated by photolithography and lift-off techniques, and the variation of left-handed frequency induced by substrates with different dielectric parameters is investigated. The Snell refraction experiments of the LHM samples are carried out on an angular resoled microwave spectrometer, and the results indicate that the left-handed frequencies of the LHMs shifted downward from 10.57 GHz to 9.74 GHz when the dielectric parameters of the LHM substrates increase from 3.7 to 4.8. Moreover, the finite difference time domain method is used to simulate the microwave transmission properties of the left-handed materials with different substrates, and the experimental results are in agreement with the numerical simulation results. In addition, the reason for the shifting of the left-handed frequency of the LHMs is discussed theoretically.  相似文献   

11.
沈国策  苏桦  张怀武  荆玉兰  唐晓莉 《中国物理 B》2013,22(8):87801-087801
The effects of the addition of H 3 BO 3 on the microstructure, phase formation, and microwave dielectric properties of (Zn 0.7 Mg 0.3 )TiO 3 ceramics sintered at temperatures ranging from 890 ℃ to 950 ℃ are investigated. H 3 BO 3 as a sintering agent can effectively lower the sintering temperature of ZMT ceramics below 950 ℃ due to the liquid-phase effect. The microwave dielectric properties are found to strongly correlate with the amount of H 3 BO 3 . With the increase in H 3 BO 3 content, the dielectric constant (ε r ) monotonically increases, but the quality factor (Q × f ) reaches a maximum at 1 wt% H 3 BO 3 , and the apparent density of ZMT ceramics with H 3 BO 3 ≥ 1 wt% gradually decreases. At 950 ℃, the ZMT ceramics with 1% H 3 BO 3 exhibit excellent microwave dielectric properties: ε r = 19.8, and Q × f = 43800 GHz (8.94 GHz).  相似文献   

12.
The reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites have been studied in the microwave frequency range.The permeability of Fe50Ni50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy,and can be further enhanced by using a rotational orientation method.The complex permeability can be considered as the superposition of two types of magnetic resonance.The resonance peak at high frequency is attributed to the natural resonance,while the peak at low frequency is attributed to the domain-wall resonance.The simulated results of the microwave reflectivity show that the matching thickness,peak frequency,permeability,and permittivity are closely related to the quarter wavelength matching condition.The Fe50Ni50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band(1-2 GHz).  相似文献   

13.
Owing to the novel crystal structure, ε-Co nanoparticles with an average diameter of 12 nm are synthesized and the microwave magnetic properties of the epoxy resin composite with 50voi% ε-Co particles are measured in the frequency range 0.1-7 GHz. The experimental resonance frequency (4.7 GHz) matches well with the values obtained by the theoretical calculation with the Kittel equation and fitting the experimental permeability dispersion curve via the Landan-Lifshitz equation. Hence the resonance peak is attributed to natural resonance mode. This work is believed to be beneficial for further understanding microwave applications of the novel ε-Co nanoparticles.  相似文献   

14.
M-type barium hexaferrites with chemical composition Ba_(1-x)Dy_xFe_(12-y)Cr_yO_(19)(x = 0.0, 0.1, 0.2, and y =0.0, 0.4, 0.5) were synthesized via sol–gel auto-combustion method. The samples were pre-sintered at 400℃ for 3 h and sintered at 950℃ for 5 h. The changes in the structural, dielectric, and optical properties were studied after the substitution of Dy~(3+) and Cr~(3+) ions. X-ray diffraction(XRD) analysis confirms the formation of single phase hexaferrites with the absence of secondary phase. FTIR analysis gives an idea of the formation of hexaferrites with the appearance of two peaks at 438 cm~(-1) and 589 cm~(-1). The field emission scanning electron micrographs(FESEM) show a combination of crystallites with large shapes close to hexagonal platelet-like shape and others with rice or rod-like shapes, whereas EDX and elemental analysis confirm the stoichiometry of prepared samples. The calculated band gap from UV-vis NIR spectroscopy spectra was found to decreases with increase in Dy~(3+)–Cr~(3+)substitution. The dielectric properties were explained on the basis of Maxwell–Wagner model. Enhancement of dielectric constant at higher frequencies was observed in all the samples. Low dielectric loss is also observed in all the samples and Cole–Cole plot shows that grain boundary resistance(Rgb) contribute most to the dielectric properties. The prepared samples exhibit properties that could be useful for optoelectronics and high frequency application.  相似文献   

15.
With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core,carbon-coated nickel Ni(C) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz–18 GHz for paraffin-Ni(C) composites are investigated.The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%,70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches-26.73 d B at 12.7 GHz, and below-10 d B, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.  相似文献   

16.
17.
徐芳  白洋  艾芬  乔利杰 《中国物理 B》2008,17(12):4652-4655
The magnetic and dielectric properties of Sr-substituted Zn2-Y hexagonal ferrites (Ba2-x SrxZn2Fe12O22, 1.0 〈 x ≤ 1.5) are studied in this paper. Sr substitution will lead to the variation of cation occupation, which influences both the magnetic and electric properties. As Sr content x rises from 1.0 to 1.5, magnetic hysteresis loop gets wider gradually and the permeability drops rapidly due to the transformation from ferrimagnetic to antiferromagnetic phase. Moreover, permittivity rises with increasing Sr content. Under a certain external magnetic field, the phase transition of helical spin structure of Ba0.5Srl.5Zn2Fe12O22 at about 295 K seems to open a possibility for the room-temperature ferroelectricity induced by magnetic field. But its low resistivity prevents the observation of ferroelectric and magnetoelectric properties at room-temperature.  相似文献   

18.
马小明  李志伟  位建强  王涛  李发伸 《中国物理 B》2010,19(9):97401-097401
This paper investigates the high frequency behaviours and magnetic anisotropy of rapidly solidified FINEMET (Fe73.5Si13.5B9Nb3Cu1) alloy ribbons annealed in an applied magnetic field. It finds that the ribbons annealed with the applied magnetic field show much higher resonance frequencies and have even higher permeability at higher frequencies than the samples annealed without the magnetic field and the non-annealed ribbons. Mssbauer spectroscopy had been employed to study the spatial distribution of the magnetic moments of five selected FINEMET alloy ribbons in different heat-treated conditions. The results show that an easy plane has been established after annealling in the magnetic field, while for the other ribbons this effect is not significant. Hence, the relationship between magnetic field annealing and high frequency property has been bridged by the bianisotropic theory.  相似文献   

19.
Fe50Mn15-xCoxNi35(x=0,1,3,5,7)alloys were prepared by arc melting under purified argon atmosphere.The ingots were homogenized at 930°C for 90h followed by water quenching.The crystal structure,magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction(XRD)and MPMS-7-type SQUID.The results show that all samples still maintained a single-(Fe,Ni)-type phase structure.With the increase of the content of Co,the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic(FM)to paramagnetic(PM)state near Curie temperature.The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35alloy was 2.55 J/kg·K and 181 J/kg,respectively,for an external field change of 5T.Compared with rare earth metal Gd,Fe50Mn15-xCoxNi35 series of alloys have obvious advantage in resource price;their Curie temperatures can be tuned to near room temperature,maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.  相似文献   

20.
Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air.The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes.The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons.Moreover,for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave,the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas,frequencies of pulsed modulator,duty cycles of pulsed microwave,peak values of input microwave power,and even by using different materials of dielectric tubes.In addition,the emission spectrum,the plume temperature,and other plasma parameters are measured,which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号