首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
彭冬生  陈志刚  谭聪聪 《中国物理 B》2012,21(12):128101-128101
A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an AlN buffer layer in situ is introduced to grow the GaN film laterally. The crack-free GaN film with thickness over 1.7 micron is grown on an Si(111) substrate successfully. Synthesized GaN epilayer is characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the <0001> crystal orientation and the full width at half maximum of the X-ray diffraction curve in the (0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an SixNy interlayer. In addition, Raman scattering is used to study the stress in the sample. The results indicate that the SixNy interlayer can more effectively accommodate the strain energy. So the dislocation density can be reduced drastically, and the crystal quality of GaN film can be greatly improved by introducing SixNy interlayer.  相似文献   

2.
We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.  相似文献   

3.
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.  相似文献   

4.
Metal Organic Vapour Phase Epitaxy (MOVPE) of AlN and GaN layers at a temperature of 1080 C were performed on porous Si(111) and Si(111) substrates. The thermal stability of porous silicon (PS) is studied versus growth time under AlN and GaN growth conditions. The surface morphology evolution of the annealed PS is revealed by scanning electron microscopy (SEM). Porous Si(111) with low porosity (40%) is more thermally stable than porous Si(100) with relatively high porosity (60%).AlN layers with various thicknesses were grown under the same conditions on the two substrates. Morphological properties of AlN were studied by atomic force microscopy (AFM) and compared taking into account the two different surfaces of the substrates. The two growth kinetics of AlN were found to be different due to the initial surface roughness of the PS substrate. The effect of AlN buffer morphology on the qualities of subsequent GaN layers is discussed. Morphological qualities of GaN layers grown on PS are improved compared to those obtained on porous Si(100) but are still less than those grown on Si substrate.  相似文献   

5.
The structure and light-emitting properties of nanocrystalline cubic silicon carbide films prepared by chemical conversion from hexane vapors are discussed. The morphology, the composition, and the crystallographic structure of the grown silicon carbide thick films are thoroughly analyzed using X-ray diffraction, electron diffraction, white light interferometry, and scanning probe and transmission electron microscopies. The excitation with the use of the third harmonic of a femtosecond laser (λexcit = 266 nm) makes it possible for the first time to reveal the luminescence line lying in the deep UV region with the wavelength λ = 340 nm in addition to the usually observed lines in the high-temperature photoluminescence spectrum. The nature of the lines observed in the photoluminescence spectrum is discussed.  相似文献   

6.
Experiments on growing single-crystal diamond films on silicon crystals with (111) surface orientation have been performed. Results attesting to the possibility of obtaining thin heteroepitaxial films are presented. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 5, 414–418 (10 March 1997)  相似文献   

7.
刘战辉  张李骊  李庆芳  张荣  修向前  谢自力  单云 《物理学报》2014,63(20):207304-207304
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.  相似文献   

8.
庞斐  梁学锦  廖昭亮  尹树力  陈东敏 《中国物理 B》2010,19(8):87201-087201
Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperatures below or above TC, respectively. The transition temperature TC decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than TC.  相似文献   

9.
10.
11.
Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO(2) amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO(2)/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains ( approximately 100 nm in size) grown along [0001] direction with about 20 degrees between the (1l00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer.  相似文献   

12.
利用LP-MOCVD在Si(111)衬底上,以高温AIN为缓冲层,分别用低温GaN(LT-GaN)和偏离化学计量比富Ga高温GaN(HT-GaN)为过渡层外延生长六方相GaN薄膜。采用高分辨率双晶X射线衍射(DCXRD),扫描电子显微镜(SEM),原子力显微镜(AFM)和室温光致荧光光谱(RT-PL)进行分析。结果表明,有偏离化学计量比富Ga HT-GaN为过渡层生长的GaN薄膜质量和光致荧光特性均明显优于以LT-GaN为过渡层生长的GaN薄膜,得到GaN(0002)和(1012)的DCXRD峰,其半峰全宽(FWHM)分别为698s和842s,室温下的光致荧光光谱在361nm处有一个很强的发光峰,其半峰全宽为44.3meV。  相似文献   

13.
Porous GeSi/Si heterostructures were fabricated by laterally anodization in HF-based solutions. Photoluminescence spectra have been investigated as a function of temperature (77–300 K), showing that porous GeSi has a quite different temperature dependence from that of porous silicon. Raman spectra indicated that the sample structure changed after anodization. Phonon participation and direct recombination of excitons are proposed to be responsible in the light emission processes of porous GeSi and Si, respectively.  相似文献   

14.
The photoluminescence of GaAs/Si grown by OMCVD has been analyzed as a function of temperature and the dominant high temperature line identified as a conduction-band-to-valence-band transition. Photoluminescence excitation spectra indicate that the transition is excitonic at 4.2 K. A second line, also identified as intrinsic, dominates the spectra below 100 K. A biaxial tensile strain is proposed to account for the two intrinsic lines through a splitting of the valence band degeneracy.  相似文献   

15.
16.
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.  相似文献   

17.
The potential to grow filamentary GaN nanocrystals by molecular beam epitaxy on a silicon substrate with a nanosized buffer layer of silicon carbide has been demonstrated. Morphological and optical properties of the obtained system have been studied. It has been shown that the intensity of the photoluminescence spectrum peak of such structures is higher than that of the best filamentary GaN nanocrystals without the buffer silicon carbide layer by a factor of more than two.  相似文献   

18.
In this paper, we report on the characteristics of GaN films grown on Si(111) at a low temperature (200 °C) by electron cyclotron resonance (ECR) plasma-assisted metalorganic chemical vapor deposition (PA-MOCVD). Structural analysis of the GaN films was performed by using scanning electron microscopy (SEM), atomic force miscroscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Rutherford backscattering spectrometry (RBS). Post deposition analysis revealed high quality crystalline GaN was obtained at this low temperature. Electrical analysis of the GaN films was done by using current-voltage (I-V) measurements where electrical characterizations were carried on GaN/Si heterojunction and Schottky barrier diodes. Rectification behaviour was observed for the isotype GaN/Si (n-n) heterojunction. Ideality factors and Schottky barrier heights for Ni and Cr Schottky barriers on GaN, were deduced to be 1.4 and 1.7; and 0.62 and 0.64 eV, respectively.  相似文献   

19.
The characteristics of temperature-dependent photoluminescence (PL) from Si nanocrystals and effects of arsenic-doping (As-doping) were investigated. The Si nanocrystals on a p-type Si substrate were prepared by low pressure chemical vapor deposition and post-deposition thermal oxidation. The As-doping process was carried out using the gas-phase-doping technique. Temperature-dependent PL from Si nanocrystals exhibited considerable differences between samples with/without As-doping. Phase transition between electron-hole liquid and free exciton was observed in the undoped Si nanocrystals, leading to the increase in PL intensity with temperature less than 50 K. Electron emission from As-doped Si nanocrystals to the p-Si substrate was responsible for the significant increase in PL intensity with temperature greater than 50 K. Characteristics of light emission from Si nanocrystals will facilitate the development of silicon-based nanoscaled light-emitting devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号