首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy(PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions(P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.  相似文献   

2.
基于紧聚焦方法在几何焦平面处获得了完美涡旋光场,理论分析了该光场中微米级尺寸微粒受到的光学力与轨道矩.结果表明,该完美涡旋光可以在横平面上捕获微粒并驱动其绕光轴做轨道旋转运动,微粒受到的轨道矩随着拓扑荷的增大先增大后趋近于稳定.此外,分析了圆偏振、径向偏振和方位角偏振完美涡旋光对微粒施加的光学力和轨道矩.结果表明完美涡...  相似文献   

3.
The magnetic vortex with in-plane curling magnetization and out-of-plane magnetization at the core is a unique ground state in nanoscale magnetic elements. This kind of magnetic vortex can be used, through its downward or upward core orientation, as a memory unit for information storage, and thus, controllable core switching deserves some special attention. Our analytical and micromagnetic calculations reveal that the origin of vortex core reversal is a gyrotropic field. This field is induced by vortex dynamic motion and is proportional to the velocity of the moving vortex. Our calculations elucidate the physical origin of the vortex core dynamic reversal, and, thereby, offer a key to effective manipulation of the vortex core orientation.  相似文献   

4.
孙璐  火炎  周超  梁建辉  张祥志  许子健  王勇  吴义政 《物理学报》2015,64(19):197502-197502
利用上海光源软X射线谱学显微光束线站(STXM)并结合X射线的磁圆二色效应, 我们对方形、圆形和三角形的Ni80Fe20薄膜微结构中的磁涡旋结构进行了定量实验观测, 并利用同步辐射光源的元素分辨特性, 分别在Fe和Ni的L3吸收边对涡旋磁结构进行了观测. 我们还对磁涡旋中磁矩的分布进行了定量分析, 发现实验结果与微磁学模拟结果完全符合.  相似文献   

5.
为玻色Hofstadter梯子模型引入交错跃迁,来扩展模型支持的量子流相.基于精确对角化和密度矩阵重整化群计算发现,无相互作用时,系统中包含横流相、涡旋相和纵流相;横流相来自均匀跃迁时Hofstadter梯子模型的Meissner相,纵流相是交错跃迁时才可见的流相.强相互作用极限下系统的超流区也包含横流相、纵流相和涡旋相,但存在更多的相变级数;超流区的横流相、纵流相之间存在相变但Mott区的不存在,把Mott区的"横、纵流相"称为Mott-均匀相,在Mott区只存在均匀相和涡旋相.跃迁的交错会压缩涡旋相存在的区域,使Mott区最终只剩下均匀相;跃迁的交错不仅能驱动Mott-超流相变,还使磁通的改变也能够驱动系统的Mott-超流相变.对这一系统的研究丰富了磁通系统中的量子流相,同时为研究拓扑流特性提供了模型支持.  相似文献   

6.
于涛  刘毅  朱正勇  钟汇才  朱开贵  苟成玲 《物理学报》2015,64(24):247504-247504
研究了Mo覆盖层厚度对MgO/CoFeB结构磁各向异性的影响. 研究发现, 加平行磁场生长出来的MgO/CoFeB/Mo样品表现为面内各向异性, 并且随着CoFeB的厚度减小, 面内各向异性逐渐减弱; 在CoFeB厚度减小到1.1 nm时, 仍可以保持面内各向异性, 垂直方向的外加饱和场逐渐减少; 厚度在0.9 nm及以下的情况下, 面内各向异性消失. 改变Mo覆盖层厚度, 当tMo= 1.6 nm时, 垂直方向的饱和场最小. 当生长过程的磁场变为垂直磁场时, 不同厚度的Mo覆盖层对MgO/CoFeB 的磁各向异性影响不同. Mo厚度在1 nm及以下时MgO/CoFeB/Mo样品表现为面内各向异性, Mo覆盖层厚度在1.2和5 nm之间时样品出现了垂直磁各向异性; 并且垂直方向的矫顽力也发生了变化, Mo覆盖层厚度为1.4 nm时样品的磁滞损耗会大一些.  相似文献   

7.
We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films.The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness.According to the stopping and range of ions in matter(SRIM)simulation results,defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering,which can account for the weakness of PMA.The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque(SOT)induced magnetization switching also can be modified.Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.  相似文献   

8.
The interaction of a magnetic vortex in a circular ferromagnetic nanoparticle with the probe field of a magnetic force microscope (MFM) is theoretically investigated. In the calculations, the probe field is approximated by the point dipole field. The rigid magnetic vortex model is used to describe the vortex state of magnetization. It is found that the effect of the probe field on the rigid magnetic vortex shell is similar to the effect of a uniform magnetic field parallel to the particle plane. The effect of the Z component of the probe field on the core of the vortex results in mutual probe-vortex attraction or repulsion. It is shown that the magnetization direction of the core of the vortex in the MFM probe field can be changed without a change in the shell vorticity direction.  相似文献   

9.
We report on the dynamics of magnetic domain structure conversions exhibited by soft magnetic thin-film elements of elementary geometrical shape (square, disc, triangle) when exposed to a strong external magnetic field. Starting from flux closure vortex patterns, the magnetic structures evolve towards an in-plane saturated state under the influence of an external field. This irreversible and nucleation-free magnetization process occurs on the time scale of picoseconds. The details of this conversion are investigated by means of a time-resolved micromagnetic finite element modeling. We find a sensitive dependence of the temporal evolution of the magnetic structure on the value of the damping parameter in Gilbert's equation of motion. In the case of high damping, domain wall motion dominates the process, while lower damping leads to the formation of a 360° wall which collapses by emitting magnetization waves. It is shown that the mobility of vortices is generally much lower than that of domain walls. The calculations indicate that at a low damping, a magnetic vortex can act almost as a source for concentric waves in ferromagnetic thin-film elements.  相似文献   

10.
A common scenario of magnetoelectric coupling in multiferroics is the electric polarization induced by spatially modulated spin structures. It is shown in this paper that the same mechanism works in magnetic dielectrics with inhomogeneous magnetization distribution: the domain walls and magnetic vortexes can be the sources of electric polarization. The electric field driven magnetic domain wall motion is observed in iron garnet films. The electric field induced nucleation of vortex state of magnetic nanodots is theoretically predicted and numerically simulated. From the practical point of view the electric field control of micromagnetic structures suggests a low-power approach for spintronics and magnonics.  相似文献   

11.
孟勇 《大学物理》2023,42(1):4-6+29
针对带有电荷的弹簧摆施加在竖直方向的匀强磁场的背景下,通过牛顿力学的方法得到了其运动学方程,从而发现其摆动平面在不停的进行旋转.同时按照初始条件的不同,将其在水平方向上的运动学方程化简为不同的曲线方程,进而得到了其运动的轨迹特征.  相似文献   

12.
We present noise measurements on YBCO thin films in different conditions of magnetic field and driving current. Noise spectra for non-driven and driven cases (in the flux-creep region) evidence deep differences in vortex dynamics between these two regimes. For the driven case, the effect of applying magnetic field is a reduction in noise, which can be explained by the increase in the fraction of vortices that undergo flux-flow. For the non-driven case, magnetic field has no significative influence on noise, probably due to the absence of Lorentz force that causes coherent movement of vortices. For all magnetic fields studied in this work (0-154 mT) the effect of increasing current is an increase of noise, which is in contrast to the results from other authors. This behavior can be explained by an increase of current induced vortex-antivortex annihilation events. We propose that driven noise has a non-monotonic behavior due to the competition between annihilation events and driving force which causes opposite effects on noise.  相似文献   

13.
We have numerically solved the overdamped equation of vortex motion in a two-dimensional driven vortex lattice with disordered pinning, in which the driving Lorentz force, the pinning force due to point defects, the intervortex interacting force, and the thermal fluctuation force are taken into account. It is found that the vortex density and pinning strength are two important factors of affecting the melting transition of a vortex lattice. At low magnetic fields, there exist hysteresis loops of the average vortex velocity and the average pinning force vs. the driving force, from which the feature of a first-order melting transition of the vortex motion can be clearly seen. As the magnetic field is increased beyond a critical value, the hysteresis loops disappear and the melting transition is replaced by a second-order glass transition. We have also studied the influence of intervortex interactions on the vortex melting transition by comparing several forms of repulsive forces between the vortices.  相似文献   

14.
The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa_2Cu_3O_(7-δ) bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–V_(xx) and I–V_(xy)).It is found that the I–V_(xx) curve diverges from linearity at a high driving current,while the I–V_(xy) curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force.  相似文献   

15.
孙明娟  刘要稳 《物理学报》2015,64(24):247505-247505
提出了一种特殊自旋阀结构, 其极化层(钉扎层)磁矩沿面内方向, 自由层磁矩成磁涡旋结构. 自由层在形状上设计成左右两边厚度不同的阶梯形圆盘. 微磁学模拟研究发现, 通过调控所施加的高斯型脉冲电流的大小、方向和脉冲宽度, 可以实现磁涡旋的不同旋性、不同极性的组态控制. 分析了该结构中电流调控磁涡旋旋性和极性的物理原因和微观机理.  相似文献   

16.
The problem of steady motion of the magnetic vortex in a moving domain wall under the action of the Magnus force in weak ferromagnets was studied. Dynamic bending of the domain wall containing a moving vortex was analyzed. The formulas describing the dependences of the vortex velocity on the velocity of the domain wall in which it moves were derived.  相似文献   

17.
本文认为在感生电场的情况下,磁场的强弱变化可以引起磁场自身的横向运动,使得线圈中电子相对于磁场发生运动,从而等效为一个动生电场,受到洛伦兹力的作用.借助磁感线模拟磁场的运动方式,得到圆形回路中任意一点与磁场相对运动速度的表达式,进而推得该"等效动生电场"中的洛伦兹力.以螺线管为例,验证该方法可以解释感生电场所满足的规律.将感生电场与动生电场的产生原因统一为导体中电子与磁场的相对运动,相应电动势的非静电力统一为洛伦兹力.  相似文献   

18.
Interactions between magnetic and vortex rings are studied over a wide interval of interaction parameter values ranging from negligible magnetic effects on vorticity structure, to very strong effects. The employed interaction parameter measures the strength of the Lorentz force in units of the inertial force. At small interaction parameters, the vortex ring shapes part of the magnetic ring into a dissipative, curved, magnetic sheet structure. At high interaction parameters, the Lorentz force acts as an agent of proliferation of vortex rings, since it generates two vortex rings adjacent to the original magnetic structure, one of which is pulled (together with the advected magnetic field) into the wake of the original vortex ring, while the other escapes, ready to interact with another magnetic ring. Once within the initial vortex ring wake, both magnetic and vorticity structures are stretched into spirals, whilst the Lorentz force continuously generates new, intense vorticity at high magnetic field sites.  相似文献   

19.
We examine theoretically the generation of electromagnetic radiation in the relative motion of vortex lattices in magnetically coupled films in the dc transformer geometry. We establish the conditions under which the force of mutual pinning of the vortex lattices varies according to a harmonic law as a function of the relative displacement of the vortices in the films within a given range of magnetic field inductions. In this case the equation describing the viscous flow of vortex lattices in magnetically coupled films is the same as the equation of the resistively shunted Josephson junction model. We show that magnetically coupled superconductors exhibit the properties of a Josephson element without any restrictions on the geometrical size of such a system imposed by the coherence length ξ. The frequency f of the electromagnetic radiation generated by the relative motion of vortex lattices in magnetically coupled superconductors depends on the spatial period of the vortex lattices and the velocity of relative vortex motion, which means that the frequency of the radiation can be tuned by applying a magnetic field or a current. Zh. éksp. Teor. Fiz. 113, 1319–1338 (April 1998)  相似文献   

20.
The problem of steady motion of the magnetic vortex in a moving domain wall under the action of the Magnus force in weak ferromagnets was studied. Dynamic bending of the domain wall containing a moving vortex was analyzed. The formulas describing the dependences of the vortex velocity on the velocity of the domain wall in which it moves were derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号