首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张林  汪军 《中国物理 B》2014,(8):457-462
The valley valve effect was predicted in a straight zigzag graphene nanoribbon (ZGR) p/n junction. In this work, we address a possible valley selection rule in a Y-shaped ZGR junction. By modeling the system as a three-terminal device and calculating the conductance spectrum, we found that the valley valve effect could be preserved in the system and the Y-shaped connection does not mix the valley index or the pseudoparities of quasiparticles. It is also shown that the Y-shaped ZGR device can be used to separate spins in real space according to the unchanged valley valve effect. Our finding might pave a way to manipulate and detect spins in a multi-terminal graphene-based spin device.  相似文献   

2.
刘娜  胡边  魏鸿鹏  刘红 《物理学报》2018,67(11):117301-117301
应用含自洽格点在位库仑作用的Kane-Mele模型,研究锯齿型石墨烯纳米窄带平面内横向电场对边界带能带结构和量子自旋霍尔(QSH)体系的影响.研究结果显示,当电场强度较弱时,外加电场的方向可以调控自旋向下的两个边界带一起朝不同方向移动,导致波矢q=0.5处自旋向下的两个纯边界态的能量简并劈裂方向可由电场调控;当电场强度进一步增强到超过0.69 V/nm,自旋向下的两个边界带出现较大带隙,能带反转,而自旋向上的电子结构无能隙,系统呈现半金属性,同时QSH体系不再是B类.特别当电场强度为1.17 V/nm时,在自旋向下能带的能隙中,q=0.5处存在自旋向上的纯边界态,意味着在8格点边界处可以产生自旋向上的纯边界电流.当电场强度持续增加时,QSH系统从B类到C类经历3个阶段的变化.当电场强度超过1.42 V/nm后,自旋向上的两个边界带也出现能带反转,分别成为导带和价带,系统成为C类的普通量子霍尔体系.  相似文献   

3.
Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the “defect” there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.  相似文献   

4.
We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions.The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon.It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived,the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG,while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect,in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations.Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices.  相似文献   

5.
田宏玉  汪军 《中国物理 B》2012,21(1):17203-017203
We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices.  相似文献   

6.
Applying the transfer matrix and Green's function methods, we study the valley-resolved transport properties of zigzag graphene nanoribbon (ZGNR) junctions. The width of the left and right ZGNRs are NL and NR, and NLNR. The step/dip positions of the conductance G, the intravalley transmission coefficients (TKK and ${T}_{{K}^{{\prime} }{K}^{{\prime} }}$), and the valley polarization efficiency ${P}_{{{KK}}^{{\prime} }}$ correspond to the subband edges of the right/left ZGNR that are controlled by NR/NL. The intervalley transmission coefficients (${T}_{{{KK}}^{{\prime} }}$ and ${T}_{{K}^{{\prime} }K}$) exhibit peaks at most of the subband edge of the left and right ZGNRs. In the bulk gap of the right ZGNR, ${T}_{{{KK}}^{{\prime} }}$ $={T}_{{K}^{{\prime} }K}$=0, and ${P}_{{{KK}}^{{\prime} }}$ = ±1, the valley polarization is well preserved. As NR increases, the energy region for ${P}_{{{KK}}^{{\prime} }}$ = ±1 decreases. When NL is fixed and NR decreases, G, TKK, ${T}_{{K}^{{\prime} }{K}^{{\prime} }}$ and ${P}_{{{KK}}^{{\prime} }}$ exhibit more and more dips, and the peaks of ${T}_{{{KK}}^{{\prime} }}$ (${T}_{{K}^{{\prime} }K}$) become more and more high, especially when (NLNR)/2 is odd. These characters are quite useful for manipulating the valley dependent transport properties of carriers in ZGNR junctions by modulating NL or NR, and our results are helpful to the design of valleytronics based on ZGNR junctions.  相似文献   

7.
The spin polarized adiabatic quantum pump effect in zigzag graphene nanoribbons has been numerically analyzed. Since the ground state of such a ribbon is antiferromagnetic (the opposite spin electrons are located on the opposite edges of the ribbon), the spin currents can be generated in this system with the help of the quantum pump effect when symmetry between the opposite spin states is broken. Two methods of this breaking by means of defects at the ribbon edge and the transverse electric field have been proposed. It has been shown that the generation of not only the electron and spin currents, but also the purely spin current is possible in both cases.  相似文献   

8.
A carbon nanotube (CNT)/zigzag graphene nanoribbons (ZGNRs) junctions has been proposed and investigated by first-principles calculations. The results show that large spin polarization of currents would be achieved when only one edge of ZGNR is coupled to the other lead. By virtue of spatial separation of edge state in two spin channel, one of those channels is opened at certain energy range and gives rise to spin-polarized currents under a low bias. This feature is stable whenever the ZGNR lead is under the antiferromagnetic ground states or is under the ferromagnetic states. Our findings indicate that this approach is simple and efficient for spintronics design.  相似文献   

9.
We propose two possible spin valves based on a zigzag silicene nanoribbon(ZSR) ferromagnetic junction. By using the Landauer–B u¨tikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin–orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene.  相似文献   

10.
Recent experimental characterizations have clearly visualized edge reconstructions in graphene nanoribbon and stable defective configurations. We have performed first principles calculations to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons (ZGNR). It is found that different conductance behaviors and variation of resonant energies are influenced by atomic reconstruction among three defective edge configurations. It is predicted that the conductance in edge reconstructed ZGNR is not a monotonic function of the increasing concentration of defects in size, but the topology and the distribution of defects should be taken into account. Our findings suggest that the ability of tuning the electronic transport of ZGNR could be improved through edge reconstruction activated by energetic particle irradiation.  相似文献   

11.
The electronic transport properties of a graphene nanoribbon (GNR) are known to be sensitive to its width, edges and defects. We investigate the electronic transport properties of a graphene nanoribbon heterojunction constructed by fusing a zigzag and an armchair graphene nanoribbon (zGNR/aGNR) side by side. First principles results reveal that the heterojunction can be either metallic or semiconducting, depending on the width of the nanoribbons. Intrinsic rectification behaviors have been observed, which are largely sensitive to the connection length between the zGNR and aGNR. The microscopic origins of the rectification behavior have been revealed. We find that the carrier type can alter from electrons to holes with the bias voltage changing from negative to positive; the asymmetrical transmission spectra of electrons and holes induced by the interface defects directly results in the rectification behavior. The results suggest that any methods which can enhance the asymmetry of the transmission spectra between holes and electrons could be used to improve the rectification behavior in the zGNR/aGNR heterojunction. Our findings could be useful for designing graphene based electronic devices.  相似文献   

12.
在20 mK的极低温下测量了石墨烯纳米带量子点的电子输运性质,观测到清晰的库仑阻塞菱形块和对应量子点激发态的电导峰.对库仑阻塞近邻电导峰间距和峰值进行了统计分析,发现其统计分布分别满足无规矩阵理论描述的Wigner-Dyson分布和Porter-Thomas分布,说明石墨烯纳米带量子点在低温下出现了量子混沌现象.还讨论了这种长方形量子点中量子混沌的可能成因. 关键词: 石墨烯纳米带 量子点 库仑阻塞 量子混沌  相似文献   

13.
The effects of magnetic atom on the band structure of zigzag-edged graphene nanoribbons are investigated by the density functional theory. The results show that for narrow zigzag-edged graphene nanoribbons, the band gap can be opened duo to the spin-up/spin-down charges being re-enriched on the edge sites. However, for the wide zigzag-edged graphene nanoribbons, a spin-up/spin-down half-metallic property can be observed. Moreover, it is found that the Seebeck coefficients in the narrow zigzag-edged graphene nanoribbons are reversed and enlarged, which provides a way to design novel thermoelectric device.  相似文献   

14.
Using nonequilibrium Green?s functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons.  相似文献   

15.
We report the elastic, electronic and magnetic properties of naked ZGNRs with topological line defects (LD-ZGNRs) lying symmetrically on the ribbon's middle under vertical strains at four types of line defect atoms by using a first-principles approach. By changing the position and size of the local deformation of the ribbon, the optimal position is obtained. Moreover, an apparent spin-splitting of the energy band is obtained when a local deformation is created by the vertically applied strain.  相似文献   

16.
In this paper, we investigate the influence of point structural defects on the transport properties of zigzag graphene nanoribbons (ZGNRs) under uniaxial strain field, using the numerical studies based on the ab-initio calculation, the standard tight-binding model and Green's functions. The calculation results show that the direction of applied strain and defect type significantly affect the conductance properties of ZGNRs. The conductance of the defective nanoribbons generally decreases and some dips corresponding to complete electron backscattering is appeared. This behavior is originated from the different coupling between the conducting electronic states influenced by the wave function modification around the Fermi energy which depends on the defect type. We show that the presence of defects leads to a significant increase in local current. Furthermore, we have investigated the strain-tunable spin transport of defective ZGNRs in the presence of the exchange magnetic field and Rashba spin-orbit coupling (RSOC).  相似文献   

17.
王志勇  胡慧芳  顾林  王巍  贾金凤 《物理学报》2011,60(1):17102-017102
本文采用基于密度泛函理论的第一性原理对zigzag型石墨烯纳米带中含有不同Stone-Wales缺陷的电子结构特性和光学性能进行研究. 考虑了两种模型:不计电子自旋和考虑电子自旋的情况.研究发现:不计电子自旋情况下,含对称Stone-Wales缺陷的石墨烯纳米带在缺陷区域出现了凹凸不平的折皱构型,两种不同的Stone-Wales缺陷都引起了电荷的重新分布.考虑电子自旋时,Stone-Wales缺陷的引入对石墨烯纳米带自旋密度有显著影响,也引起了不同自旋的电子态密度的变化.进一步研究了纳米带的光学性能,发现 关键词: 石墨烯纳米带 Stone-Wales缺陷 电子结构 光学性能  相似文献   

18.
We have performed ab initio   density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–VIV characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics.  相似文献   

19.
20.
We propose a mechanism by which an open quantum dot driven by two ac (radio frequency) gate voltages in the presence of a moderate in-plane magnetic field generates a spin-polarized, phase-coherent dc current. The idea combines adiabatic, nonquantized (but coherent) pumping through periodically modulated external parameters and the strong fluctuations of the electron wave function existent in chaotic cavities. We estimate that the spin polarization of the current can be observed for temperatures and Zeeman splitting energies of the order of the single-particle mean level spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号