首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axisymmetric vibrations of a viscous-fluid-filled piezoelectric sphere, with radial polarization, submerged in a compressible viscous fluid medium are investigated. The oscillations are harmonically driven by an axisymmetrically applied electric potential difference across the surface of the shell. A theoretical formulation cast the piezoelectric shell problem into a corresponding problem of an elastic shell with the contribution of piezoelectricity confined to slightly modified in vacuum natural frequencies and their associated mode shapes. It is noted that the fluid inside the shell will have a dominating influence on the vibrational characteristics of the submerged shell. The circular components of the natural frequency spectra closely follow those of the fluid-filled shell in vacuo. Furthermore, the corresponding damping components of those natural frequencies are rather small, making acoustic radiation and under-damped oscillation possible for an infinite number of natural frequencies. The characteristics of natural frequencies are elucidated using a fluid-filled polyvinglindene fluoride (PVDF) shell submerged in both air and water as an example. It is found that the piezoelectric parameters that contribute to the shell's natural frequencies is of a small order for thin PVDF shells, and is thereby negligible. It is noted that, with the mechanical constant typically associated with piezoelectric materials, fluid viscosity could have a significant effect on some vibrations. In certain cases, a natural frequency associated with a minimum viscous damping and a maximum of total damping (indicating highly efficient acoustic radiation) is possible with such a frequency.The vibrational characteristics, fluid loading, and energy flow are evaluated for a fluid-filled PVDF shell submerged in air and water. The inclusion of fluid inside the shell is shown to produce various narrow band peaks responses, vibrational absorbing frequencies, and non-dissipating frequencies. Those vibrational characteristics could have many potential applications. For example, the interior fluid could offer the option of generating a desired narrow band near resonant sound radiation while keeping power dissipation due to fluid viscosity to a minimum. Those well-defined narrow band characteristics also open up possibilities of using a vibrating, fluid-filled shell as a micro scale sensor for sensing and detection applications.  相似文献   

2.
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.  相似文献   

3.
Acoustic compliant coatings are a common approach to mitigate the radiation and scattering of sound from fluid-loaded submerged structures. An acoustic compliant coating is a coating that decouples an acoustic source from the surrounding acoustic medium; that is, it provides an acoustic impedance mismatch (different density and speed of sound product). Such a coating is distinct from an ordinary compliant coating in that it may not be resilient in the sense of low stiffness, but still provides an acoustic impedance mismatch. Ideally, the acoustic coating is applied uniformly over the entire surface of the fluid-loaded structure to minimize the acoustic radiation and scattering. However, in certain instances, because of appendages, it may not be practically possible to completely cover the surface of a fluid-loaded structure to decouple it from the adjacent acoustic medium. Furthermore, there may be some inherent advantages to optimizing the distribution of the coating around areas from which the acoustic radiation appears to be dominant. This would be analogous to the application of damping treatment to a vibrating structure in areas where the vibration levels are highest. In the case of the acoustic radiation the problem is more complex because of the coupling between the acoustic fluid and the structure. In this paper, the influence of a partial coating on the acoustic radiation from a fluid-loaded, cylindrical shell of infinite extent and excited by either a line force or an incident plane acoustic wave is examined. The solution to the response and scattered pressure is developed following the procedure used by the authors in previous work on the scattering from fluid-loaded plates and shells. The coating is assumed to be normally reacting providing a decoupling layer between the acoustic medium and the structure; that is, it does not add mass or stiffness to the base structure. The influence of added mass or stiffness of the coating can be included as an added inhomogeneity and treated separately in the solution.  相似文献   

4.
A clamped–free beam with partial active constrained layer damping (ACLD) treatment is modelled by using the finite element method. The Golla–Hughes–McTavish (GEM) method is employed to account for the frequency-dependent characteristic of the viscoelastic material (VEM). As the resultant finite element model contains too many degrees of freedom due to the introduction of dissipative coordinates, a model reduction is performed to bring the system back to its original size. Finally, optimal output feedback gains are designed based on the reduced models. Numerical simulations are performed to study the effect of different ACLD treatment configurations, with various element numbers, spacing and locations, on the damping performance of a flexible beam. Results are presented for damping ratios of the first two vibration modes. It is found that to enhance the second mode damping, without deteriorating the first mode damping, splitting a single ACLD element into two and placing them at appropriate positions of the beam could be a possible solution.  相似文献   

5.
This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.  相似文献   

6.
A direct-BEM/Fem method was proposed to analyze the vibration and acoustic radiation characteristics of a submerged structure. Model parameters of the structure and the fluid-structure interaction due to surrounding water were analyzed by using FEM and direct BEM. Vibration velocity of the outer hull surface and underwater sound pressure were computed through modal superposition technique. The direct-BEM/FEM method was first validated by analyzing a submerged cylindrical shell, then was used to analyze the vibro-acoustic behavior of a submarine stern structure. The results have demonstrated the direct-BEM/FEM method is more effective than FEM in computing the underwater sound radiation of the stern structure.  相似文献   

7.
In this paper, the vibration behavior and control of a clamped–free rotating flexible cantilever arm with fully covered active constrained layer damping (ACLD) treatment are investigated. The arm is rotating in a horizontal plane in which the gravitational effect and rotary inertia are neglected. The stress–strain relationship for the viscoelastic material (VEM) is described by a complex shear modulus while the shear deformations in the two piezoelectric layers are neglected. Hamilton's principle in conjunction with finite element method (FEM) is used to derive the non-linear coupled differential equations of motion and the associated boundary conditions that describe the rigid hub angle rotation, the arm transverse displacement and the axial deformations of the three-layer composite. This refined model takes into account the effects of centrifugal stiffening due to the rotation of the beam and the potential energies of the VEM due to extension and bending. Active controllers are designed with PD for the piezosensor and actuator. The vibration frequencies and damping factors of the closed-loop beam/ACLD system are obtained after solving the characteristic complex eigenvalue problem numerically. The effects of different rotating speed, thickness ratio and loss factor of the VEM as well as different controller gain on the damped frequency and damping ratio are presented. The results of this study will be useful in the design of adaptive and smart structures for vibration suppression and control in rotating structures such as rotorcraft blades or robotic arms.  相似文献   

8.
降低加肋双层圆柱壳辐射噪声线谱的结构声学设计   总被引:1,自引:0,他引:1  
夏齐强  陈志坚 《声学学报》2014,39(5):613-623
为降低双层圆柱壳辐射噪声线谱,从控制内壳振动响应和衰减壳间振动传递率进行结构声学设计。采用机械阻抗理论分析了环肋圆柱壳模态响应控制机理;由环肋振动方程推导分析了环肋径向机械阻抗特性;基于阻抗失配、波形转换原理提出一种阻抗加强环肋,分析了振动波阻抑特性;利用阻尼减振技术,综合考虑肋板的刚度、阻尼特性,设计了金属橡胶层叠肋板;结合数值计算实例,分析了设计双层壳模型的声辐射性能。结果表明:设计的双层加肋圆柱壳结构能有效降低辐射噪声线谱,在分析频段内辐射声压线谱平均降低约6.6 dB。研究结果对研制低噪声水下航行器具有良好的工程价值和应用前景。   相似文献   

9.
The vibratory response of submerged cylindrical shells is investigated. The shell response is presented in terms of the spatial wave-number spectrum of the normal surface displacement. The power output of the vibrating shell into the fluid and the far-field radiation from the shell are presented as a function of the wave number of the exciting force. The effects of structural damping and stiffeners are also studied.  相似文献   

10.
Acoustic signature of a submarine hull under harmonic excitation   总被引:2,自引:0,他引:2  
The structural and acoustic responses of a submarine under harmonic force excitation are presented. The submarine hull is modelled as a cylindrical shell with internal bulkheads and ring stiffeners. The cylindrical shell is closed by truncated conical shells, which in turn are closed at each end using circular plates. The entire structure is submerged in a heavy fluid medium. The structural responses of the submerged vessel are calculated by solving the cylindrical shell equations of motion using a wave approach and the conical shell equations with a power series solution. The far-field radiated sound pressure is then calculated by means of the Helmholtz integral. The contribution of the conical end closures on the radiated sound pressure for the lowest circumferential mode numbers is clearly observed. Results from the analytical model are compared with computational results from a fully coupled finite element/boundary element model.  相似文献   

11.
李黎  温激鸿  蔡力  赵宏刚  温熙森 《中国物理 B》2013,22(1):14301-014301
Using the multilayered cylinder model, we study acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials, which exhibit locally negative effective mass densities. A spring model is introduced to replace the traditional transfer matrix, which may be singular in the negative mass region. The backscattering form function and the scattering cross section are calculated to discuss the acoustic properties of the coated submerged cylindrical shell.  相似文献   

12.
A novel active control method of sound radiation from a cylindrical shell under axial excitations is proposed and theoretically analyzed. This control method is based on a pair of piezoelectric stack force actuators which are installed on the shell and parallel to the axial direction. The actuators are driven in phase and generate the same forces to control the vibration and the sound radiation of the cylindrical shell. The model considered is a fluid-loaded finite stiffened cylindrical shell with rigid end-caps and only low-frequency axial vibration modes are involved. Numerical simulations are performed to explore the required control forces and the optimal mounting positions of actuators under different cost functions. The results show that the proposed force actuators can reduce the radiated sound pressure of low-frequency axial modes in all directions.  相似文献   

13.
部分浸没圆柱壳声固耦合计算的半解析法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭文杰  李天匀  朱翔  屈凯旸 《物理学报》2018,67(8):84302-084302
部分浸没圆柱壳-流场耦合系统的声振分析是一种典型的半空间域内声固耦合问题,其振动及声学计算目前主要依赖于数值方法求解,但无论从检验数值法还是从机理上揭示其声固耦合特性,解析或半解析方法的发展都是不可或缺的.本文提出了一种半解析方法,先将声场坐标系建立在自由液面上,采用正弦三角级数来满足自由液面上的声压释放边界条件;接着基于二维Flügge薄壳理论建立了以圆柱圆心为坐标原点的壳-液耦合系统的控制方程;然后再利用Galerkin法处理声固耦合界面的速度连续条件,推导得到声压幅值与壳体位移幅值之间的关系矩阵并求解该耦合系统的振动和水下声辐射.与有限元软件Comsol进行了耦合系统自由、受迫振动和水下辐射噪声计算结的对比分析,表明本文方法准确可靠.本文的研究为解析求解弹性结构与声场部分耦合的声振问题提供了新的思路.  相似文献   

14.
Mitri FG 《Ultrasonics》2005,43(4):271-277
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.  相似文献   

15.
The classical method of separation of variables in conjunction with the translational addition theorem for cylindrical wave functions are employed to obtain an exact solution for two-dimensional interaction of a harmonic plane acoustic wave with an infinitely long (visco)elastic circular cylinder which is eccentrically coated by another (visco)elastic material and is submerged in an ideal unbounded acoustic medium. The novel features of Havriliak-Negami model for dynamic viscoelastic material behaviour are used to take the rheological properties of the coating (and/or core) material into consideration. The analytical results are illustrated with numerical examples in which a steel rod eccentrically coated with (an eccentric steel shell filled with) dissipative materials of distinct viscoelastic properties is insonified by plane sound waves at selected angles of incidence. The effects of incident wave frequency, angle of incidence, core eccentricity and dynamic viscoelastic material properties on the backscattered form function spectra are examined. Limiting cases are considered and fair agreements with available solutions are obtained.  相似文献   

16.
Scattering and radiation of acoustic waves from a fluid-loaded cylindrical shell with an external compliant layer are of interest. The compliant layer can be modeled by a normally reacting impedance layer, which has the advantage that complex compliant layer geometries, such as partial compliant layers, can be considered. A question may, however, arise as to the accuracy of this approach. A more rigorous approach is to model the elastic shell and compliant layer using a multilayer shell theory, which has the disadvantage that it cannot be extended to consider partial layers. In this paper scattering results from the normally reacting compliant layer model are compared to those from the multilayer shell model to show that the two approaches produce similar results, except for thickness resonances of the compliant layer. Having established the consistency between the two approaches, results for the far-field acoustic radiation as a function of frequency and radiation angle for a fluid-loaded shell with an external compliant layer excited by an internal ring force are obtained using the normally reacting impedance layer model. These results clearly show the reduction in the far field radiation due to the presence of the compliant layer.  相似文献   

17.
The effect of multiple compliant layers on sound radiation from a finite cylindrical shell immersed in an infinite acoustic medium is studied. The transfer matrix is derived according to the continuous boundary conditions at each adjacent interface of the multi-layer system. With the shell theory and the acoustic wave equation, the theoretical model is developed to estimate the characteristics of sound radiation. The numerical calculation results show that the amount of the acoustic radiation power reduction increases as the wave speed or the density of the compliant layer decreases, and using multi-layer system could be more effective on noise reduction than the corresponding uniform single layer.  相似文献   

18.
This work deals with the active vibration control of beams with smart constrained layer damping (SCLD) treatment. SCLD design consists of viscoelastic shear layer sandwiched between two layers of piezoelectric sensors and actuator. This composite SCLD when bonded to a vibrating structure acts as a smart treatment. The sensor piezoelectric layer measures the vibration response of the structure and a feedback controller is provided which regulates the axial deformation of the piezoelectric actuator (constraining layer), thereby providing adjustable and significant damping in the structure. The damping offered by SCLD treatment has two components, active action and passive action. The active action is transmitted from the piezoelectric actuator to the host structure through the viscoelastic layer. The passive action is through the shear deformation in the viscoelastic layer. The active action apart from providing direct active control also adjusts the passive action by regulating the shear deformation in the structure. The passive damping component of this design eliminates spillover, reduces power consumption, improves robustness and reliability of the system, and reduces vibration response at high-frequency ranges where active damping is difficult to implement. A beam finite element model has been developed based on Timoshenko's beam theory with partially covered SCLD. The Golla-Hughes-McTavish (GHM) method has been used to model the viscoelastic layer. The dissipation co-ordinates, defined using GHM approach, describe the frequency-dependent viscoelastic material properties. Models of PCLD and purely active systems could be obtained as a special case of SCLD. Using linear quadratic regulator (LQR) optimal control, the effects of the SCLD on vibration suppression performance and control effort requirements are investigated. The effects of the viscoelastic layer thickness and material properties on the vibration control performance are investigated.  相似文献   

19.
An exact study of radiation of an acoustic field due to radial/axial vibrations of a baffled cylindrical piston, eccentrically positioned within a fluid-filled thin cylindrical elastic shell, into an external fluid medium is presented. This configuration, which is a realistic idealization of a liquid-filled cylindrical acoustic lens with a focal point inside the lens when used as a sound projector, is of practical importance with a multitude of possible applications in underwater acoustics and ocean engineering. The formulation utilizes the appropriate wave field expansions along with the translational addition theorems for cylindrical wave functions to develop a closed-form solution in the form of an infinite series. Numerical results reveal the key effects of excitation frequency, cap angle, radiator position (eccentricity), dynamics of the elastic shell, and cap surface velocity distribution on sound radiation.  相似文献   

20.
水下双层圆柱壳体结构辐射噪声实时预报方法研究   总被引:2,自引:0,他引:2  
金广文  何琳 《声学学报》2010,35(4):427-433
根据Sommerfeld辐射条件和统计能量假设定义了具有方向性特征的声辐射系数,再结合声辐射效率特性定义了新的参数声辐射因子。在外壳体表面速度实时重构理论基础上提出了用声辐射因子实现水下双层圆柱壳体结构辐射噪声实时预报的方法,还提出了有限长水下圆柱壳体结构声辐射因子的试验测量方法。水下声学试验研究表明该方法预报的辐射声压与实测值吻合较好,能满足水下噪声预报的实时性、远场指向性和工况适应性等计算要求。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号