首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The work is devoted to the optimization of layer thickness in an organic photovoltaic cell. It presents the applied calculation method which is based on the optical transfer matrix 2×2 formalism. We present the influence of thickness of a PEDOT:PSS layer and of an active layer on the normalized modulus squared of optical electric fields distribution inside devices and on the distributions of exciton generation rate. We present the relationship between optimal thicknesses of the PEDOT:PSS layer and the active layer. We also present the influence of antireflection coating on distributions of optical electrical fields, as well as the distributions of exciton generation rate. Perpendicular and oblique illumination of the photovoltaic structure is discussed.  相似文献   

2.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Ordered bulk heterojunction organic solar cells are devices that combine the advantages of the planar bilayer and the bulk heterojunction architectures. They offer uninterrupted pathways to electrodes for effective charge collection and an extended Donor–Acceptor interface for efficient exciton dissociation. Additionally, this interface can also be a potential approach to increase photon absorption by light trapping. Light absorption and charge carrier generation of organic nanostructures are studied by means of finite-element modeling for a wide range of structuring widths, periods and heights for poly(3-hexylthiophene):1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) structures. Results show an increase in light absorption at certain wavelengths in the P3HT region with respect to an equivalent planar bilayer model. This increase can be attributed to two phenomena: for the smallest periods the structures behaves like an effective medium, while for periods of the order of magnitude of the incident light wavelength there is light trapping. The maximum increase in absorption was achieved for a 250 nm-width and 500 nm periodicity structure with a height of 40 nm. Exciton diffusion has also been studied to evaluate the effective amount of absorbed light contributing to photocurrent. In this case, best results correspond to the smallest sizes (1.25–12.5 nm-width) for all the considered heights, achieving an increment in the photocurrent up to more than a factor 6 if compared with that of the reference planar bilayer device. This study can be used to optimize our devices, which are achieved via nanoporous anodic alumina templates.  相似文献   

4.
Over the past decades, organic solar cells based on semiconducting polymers or small molecules have become a promising alternative to traditional inorganic photovoltaic devices. However, to address the intrinsic limitations of organic materials, such as charge separation yield, charge transport and durability, new strategies based on hybrid organic/inorganic materials have been explored. One such approach exploits mesoporous inorganic nanostructures as electron acceptors, which takes advantage of the potential to control the active layer structure and interface morphology through nanoparticle synthesis and processing. In this work, the potential of hybrid photovoltaics will be discussed and illustrated through a recent study of bulk heterojunction systems based on the blend of TiO2 nanorods with a conjugated polymer. To cite this article: J. Bouclé et al., C. R. Physique 9 (2008).  相似文献   

5.
We used a variety of optoelectronic techniques such as broadband fs transient and cw photomodulation spectroscopies, electroabsorption, and short-circuit photocurrent in bulk heterojunctions organic solar cells for studying the photophysics in pi-conjugated polymer-fullerene blends with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices.  相似文献   

6.
The efficiency that a solar cell can reach is ultimately limited by the number of photons absorbed in its active layer. Bulk heterojunction polymer solar cells are fabricated from a stack of thin film layers, each of which is thinner than a single wavelength from an incident photon within its absorption band. One consequence of this thin film layer stack is a strong optical interference between the various layers that can change the quantity of light dissipated in the active layer by 50%. Here we use optical modeling to quantitatively calculate the dissipation in each of the various layers as functions of wavelength and layer thickness. Using this information the loss free short circuit current density can be calculated (Jscmax). Optimization of Jscmax leads to direct improvements in the efficiency of the solar cell through improved light dissipation in the active layer. The optical properties for a P3HT:PCBM active layer and a model Lorentzian low band gap spectrum are optimized and ideal fabrication conditions are reported for these materials. PACS 72.40.+w; 72.80.Le  相似文献   

7.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

8.
《Current Applied Physics》2014,14(3):340-344
We present an analytical model for bulk heterojunction organic solar cells incorporating the physics of recombination in the transport equations. Monomolecular recombination process is considered to be the dominant mechanism and treated explicitly. The proposed analytical model shows good agreement with the experimental data as well as with the numerical simulations. The improvements over the previous models are also presented to show the importance of considering the recombination process. The model can be used to find device characteristics such as current–voltage characteristic, efficiency etc. of bulk heterojunction organic solar cells avoiding the mathematical complexities of numerical models.  相似文献   

9.
In this paper, bulk heterojunction photovoltaic devices based on the poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV):Bi2S3 nanorods hybrid material were present. To optimize the performance of the devices, the interface modification of the hybrid material that has a significant impact on the exciton dissociation efficiency was studied. An improvement in the device performance was achieved by modifying the Bi2S3 surface with a thin dye layer. Moreover, modifying the Bi2S3 surface with anthracene-9-carboxylic acid can enhance the performance further. Compared with the solar cells with Bi2S3 nanorods hybrid with the MDMO-PPV as the active layer, the anthracene-9-carboxylic acid modified devices are better in performance, with the power conversion efficiency higher by about one order in magnitude.  相似文献   

10.
A new model to explain nongeminate recombination in organic bulk heterojunction solar cells is presented. We suggest that the annihilation of excitons on charge carriers at the interface between donor and acceptor phases competes with the bimolecular recombination of Coulombically bound electron–hole pairs. The exciton–polaron interaction gives visible contribution to the reduction of Langevin recombination. An analytical formula, which describes the reduction prefactor, has been derived. We demonstrate that exciton–charge carrier interactions cause an increase of the recombination order. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The ternary blend films have been fabricated via adding 4,4’-N,N’-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.  相似文献   

12.
《Current Applied Physics》2020,20(1):172-177
Doping is a widely-implemented strategy for enhancing the inherent electrical properties of metal oxide charge transport layers in photovoltaic devices because higher conductivity of electron transport layer (ETL) can increment the photocurrent by reducing the series resistance. To improve the conductivity of ETL, in this study we doped the ZnO layer with aluminum (Al), then investigated the influence of AZO on the performance of inverted bulk heterojunction (BHJ) polymer solar cells based on poly [[4,8-bis [(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b’]dithiophene-2,6-diyl]-[3-fluoro-2[(2-ethylhexyl)-carbonyl]-thieno-[3,4-b]thiophenediyl ]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The measured conductivity of AZO was ~10−3 S/cm, which was two orders of magnitude higher than that of intrinsic ZnO (~10−5 S/cm). By decreasing the series resistance (Rs) in a device with an AZO layer, the short circuit current (Jsc) increased significantly from 15.663 mA/cm2 to 17.040 mA/cm2. As a result, the device with AZO exhibited an enhanced power conversion efficiency (PCE) of 8.984%.  相似文献   

13.
以Zn(NO3)2·6H2O/HMT为反应物,通过低温水热反应过程,在籽晶衬底上制备了ZnO纳米棒,分别用场发射扫描电子显微镜和X射线衍射仪对ZnO纳米棒形貌与晶体结构进行了表征,并研究了不同方法制备的ZnO籽晶层以及籽晶层厚度对ZnO纳米棒形貌及结晶质量的影响.结果表明磁控溅射籽晶衬底上生长的ZnO纳米棒结晶质量最好,而籽晶层的厚度对ZnO纳米棒的垂直取向性有一定的影响.  相似文献   

14.
Novel nanostructures of ZnF(OH) nanoplates decorated rhombus-shaped ZnF(OH) nanorods were fabricated. The obtained precursors were transformed by calcination to porous hierarchical ZnO nanostructures with the original morphologies retained. Field emission scanning electron microscope images exhibit that the nanoplates are grown in the interstices between the nanorods and on the top of the nanorods. The structure and composition of the obtained products have been confirmed by transmission electron microscope and X-ray diffraction measurements. The obtained ZnO nanostructures have been successfully used in solar cells. The light-to-electricity conversion results show that the complex nanostructures exhibit a power conversion efficiency of 1.36% with a photoelectrode thickness of 4.2 µm, which is comparable to those based on 40 µm vertically aligned hexagonal-shaped ZnO nanowire array photoelectrodes. These results indicate that the synthesized ZnO nanoplate decorated rhombus-shaped ZnO nanorod nanostructures are more suitable for application as a photoelectrode in solar cells.  相似文献   

15.
We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm−2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m−2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.  相似文献   

16.
Fullerene/porphyrin bulk heterojunction solar cells were fabricated and, the electronic and optical properties were investigated. Effects of exciton-diffusion blocking layer of perylene derivative on the solar cells between active layer and metal layer were also investigated. Optimized structures with the exciton-diffusion blocking layer improved conversion efficiencies. Energy levels of the molecules were calculated and discussed. Nanostructures of the solar cells were investigated by X-ray and electron diffraction, which indicated formation of fullerene/porphyrin mixed crystals. Electronic structures of the molecules were investigated by molecular orbital calculation, and energy levels of the solar cells were discussed.  相似文献   

17.
介绍了一种有机体异质结太阳能电池的数值模拟方法,模型使用Onsager提出的成对复合理论,并结合了完善的无机半导体理论而提出来的,其结果与实验结果符合较好,证明了模型的正确性.在此基础上分析了器件的内建电场与工作温度对器件性能的影响,以及影响器件光电流的主要因素. 关键词: 有机太阳能电池 体异质结 数值分析  相似文献   

18.
The effect of a thermal annealing treatment on the performance of bulk heterojunction photovoltaic cells based on poly[2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) and fullerene (C60) composites is investigated. Upon thermal annealing at 120 °C, short-circuit current and power conversion efficiency (η) are more than tripled, while a sharp rise by eight times in and η is found for the device annealed at 200 °C. It is concluded that the improved phase separation between MEH-PPV and C60 leads to the enhancement of and η at 120 °C, while thermodynamic molecule arrangement at the higher temperature of ∼200 °C induces a significant increase in all photovoltaic parameters of composite devices except the open-circuit voltage .  相似文献   

19.
Based on simple analytical equations, short circuit current density (JSC) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of JSC; and obvious oscillatory behaviour of JSC was observed as a function of thickness. At the same time, the influence of the carrier lifetime on JSC also cannot be neglected. When the carrier lifetime is relatively short, JSC only increases at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and JSC behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.  相似文献   

20.
Inverted organic solar cells are fabricated using low-temperature-annealed ZnO film as an electron transport layer. Uniform ZnO films were prepared by spin coating a diethylzinc (DEZ) precursor solution in air, followed by annealing at 100 °C. Organic solar cells prepared on these ZnO films with a 1:1 P3HT:PCBM blend as the active layer show a high power conversion efficiency of 4.03 %, which is more than 10 % higher than the PCE of solar cells comprising ZnO prepared via a high-temperature sol–gel route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号