首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

2.
Abstract

The isocratic separation of 14 carotenoids, as well as retinol, retinyl acetate, retinyl palmitate, α-tocopherol and tocopherol acetate, is accomplished in 12 minutes, using a Spheri-5-ODS column and acetonitrile:dichloromethane:methanol (70:20:10) as mobile phase, with two-channel, programmable multiwavelength detection. The carotenoids separated are as follows: lutein/zeaxanthin, canthaxanthin, β-apo-8′ carotenal, β-cryptoxanthin, echinenone, lycopene, γ-carotene, α-carotene, β-carotene, 9-cis-β-carotene, 15-cis-/13-cis-β-carotene, phytoene and phytofluene. The separation of lutein and zeaxanthin is obtained simply by changing the mobile phase to acetonitrile:methanol (85:15).  相似文献   

3.
The carotenoid composition of the carotenoprotein asteriarubin ex the starfish Asterias rubens, determined by HPLC, comprised canthaxanthin ( 6 , 3% of total), all-trans-astaxanthin ( 1 , 14%), all-trans-7,8-didehydroastaxanthin ( 2 , 24%), all-trans-7,8,7′,8′-tetradehydroastaxanthin ( 3 , 43%) and 4-oxomytiloxanthin ( 7 , 10%). The previously unknown 4-oxomytiloxanthin was tentatively identified by the UV./VIS., 'H-NMR. spectra and MS. data. The optical purity was determined by HPLC. of the di-(?)-camphanates, by comparison with those of synthetic standards: 7,8,7′, 8′-tetradehydroastaxanthin (92% (3S, 3′S), 2% meso), 7,8-didehydroastaxanthin (89% (3S,3′S), 2% meso?), and astaxanthin (78% (3S,3′S), 14% (3R,3′S), and 5% (3R,3′R)). It is concluded that the acetylenic derivatives of astaxanthin in contrast to astaxanthin from marine animal sources are essentially pure (3S, 3′S)-isomers. This might reflect their probable metabolic formation by 4-oxo modification of acetylenic (3R,3′R)-carotenols ex Mytilus edulis in their diet.  相似文献   

4.
The main pigments of Rhizobium lupini were 2,3,2′,3′-di-trans-tetrahydroxy-β,β-caroten-4-one and 2,3,2′,3′-di-trans-tetrahydroxy-β,β-carotene. As minor components 7,8,7′,8′-tetrahydro-ψ, ψ-carotene (ζ-carotene), β, β-carotene (β-carotene), and tentatively, a 2,3,2′(or 3′)-trihydroxy-β, β-caroten-4-one and a 2,3,2′(or 3′)-trihydroxy-β, β-carotene were identified.  相似文献   

5.
The construction of the carotenoid skeleton by Pd-catalyzed Csp2−Csp2 cross-coupling reactions of symmetrical and non-symmetrical 1,10-bissilyldeca-1,3,5,7,9-pentaenes and the corresponding complementary alkenyl iodides has been developed. Reaction conditions for these bidirectional and orthogonal Hiyama–Denmark cross-coupling reactions of bisfunctionalized pentaenes are mild and the carotenoid products preserve the stereochemical information of the corresponding oligoene partners. The carotenoids synthesized in this manner include β,β-carotene and (3R,3′R)-zeaxanthin (symmetrical) as well as 9-cis-β,β-carotene, 7,8-dihydro-β,β-carotene and β-cryptoxanthin (non-symmetrical).  相似文献   

6.
Carotenoids from Marine Sponges (Porifera): Isolation and Structure of the Seven Main Carotenoids from Agelas schmidtii The following carotenoids were identified in the marine sponge Agelas schmidtii: α-carotene ((6′R)-β, ε-carotene ( 1 )), isorenieratene (φ,φ-carotene ( 2 )), trikentriorhodin (3,8-dihydroxy-κ,χ-caroten-6-one ( 3 )) and zeaxanthin ((3R, 3′R)-β, β-carotene-3, 3′-diol ( 4 )). In addition, three previously unknown carotenoids called agelaxanthin A, B and C were isolated. Spectroscopical and chemical structure elucidation showed agelaxanthin A to be (3 R)-β, φ-caroten-3-ol ( 6 ) and agelaxanthin C to be a methoxy-19,3′,8′-trihydroxy-7,8-didehydro-β, κ-caroten-6′-one ( 7 ) with the methoxy group at C (2), C (3) or C (4). The limited data on age-laxanthin B were compatible with the structure of a 19-O-methyl derivative of agelaxanthin C.  相似文献   

7.
Astaxanthin and canthaxanthin are naturally occurring antioxidants referred to as xanthophylls. They are used as food additives in fish farms to improve the organoleptic qualities of salmonid products and to prevent reproductive diseases. This study reports the development and single‐laboratory validation of a rapid method for quantification of astaxanthin and canthaxanthin in eggs of rainbow trout (Oncorhynchus mykiss ) and brook trout (Salvelinus fontinalis М.). An advantage of the proposed method is the perfect combination of selective extraction of the xanthophylls and analysis of the extract by high‐performance liquid chromatography and photodiode array detection. The method validation was carried out in terms of linearity, accuracy, precision, recovery and limits of detection and quantification. The method was applied for simultaneous quantification of the two xanthophylls in eggs of rainbow trout and brook trout after their selective extraction. The results show that astaxanthin accumulations in salmonid fish eggs are larger than those of canthaxanthin. As the levels of these two xanthophylls affect fish fertility, this method can be used to improve the nutritional quality and to minimize the occurrence of the M74 syndrome in fish populations.  相似文献   

8.
The content of total carotenoids and the ratio astaxanthin/idoxanthin ( = 3,3′-dihydroxy-β,β-carotene-4,4′-dione/3,3′,4′-trihydroxy-β,β-caroten-4-one) in varoius organs and tissues of one Atlantic salmon (Salmo salar, L.) reared indoors in a tank were analyzed after feeding ‘racemic’ ((3R,3′R)/(3R,3′S; meso)/(3S,3′S) 1:2:) astaxanthin (90 mg/kg feed) during one yera. Configurational analysis of astaxanthin was carried out via the (?)-dicamphanate derivative and that of idoxanthin after reaction with (+)-(S)-l-(l-naphthyl)ethyl isocyanate. Separation of all eight optical isomers of idoxanthin-tricarbamate derivatives by HPLC is described. In salmon, enzymatic reduction of astaxanthin was found to be sterospecific leading to th (4′R)-hydroxy group irrespective of the configuration at C(3′), thus resulting in four different stereoisomers of idoxanthin formed from (3R,3′R), (3R,3′S; meso)-, and (3S3′S)-astaxanthin present in the diet.  相似文献   

9.
Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene ( 1 and 2 , resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene ( 4 ). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.  相似文献   

10.
The local algae species, Chlorella vulgaris and Scenedesmus regularis, from a highly saline water body of Kapulukaya Reservoir were isolated to analyze their carotenoid composition and content using HPLC method. The gradient solvent system of methanol–acetonitrile–water (84:14:2, v/v/v) and methylene chloride (100%), used to resolve a range of carotenoids from the saponified cells, proved an acceptable separation as inferred from the retention factor (k) ranging between 0.75 and 7.76 and the separation factor (α) values greater than 1. Resolution peaks assigned to carotenoids, 21 for C. vulgaris extracts and 22 for S. regularis extracts, were reached within the duration time of 45?min. Main carotenoids identified either tentatively or positively were all-trans-lutein, 9- or 9′-cis-lutein, 13- or 13′-cis-lutein, cis-lutein, All-trans-α-carotene, 9- or 9′-cis-α-carotene, All-trans-β-carotene, 9- or 9′-cis-β-carotene in the species except for all-trans-β-cryptoxanthin found only in S. regularis. Auroxanthin, neochrome, neoxanthin, and cis-neoxanthin were identified as epoxy-containing compounds. Quantitatively, C. vulgaris was distinguished to have greater amount of lutein and cis-isomers (2.74?mg/g), 77.89% while S. regularis was predominated by β-carotene and cis isomers as major component, being 80.72% (5.76?mg/g) in total carotenoids (TC). In terms of total carotenoids, the species were considered to be efficient sources for further practical applications.  相似文献   

11.
The potential of ketocarotenoids to protect the photosynthetic apparatus from damage caused by excess light and UV-B radiation was assessed. Therefore, the cyanobacterium Synechococcus was transformed with a foreign beta-carotene ketolase gene under a strong promoter leading to the accumulation of canthaxanthin. This diketo carotenoid is absent in the original strain. Most of the newly formed canthaxanthin was located in the thylakoid membranes. The endogenous beta-carotene hydroxylase was unable to interact with the ketolase. Therefore, only traces of astaxanthin were found. The transformant was treated with strong light (500 or 1200 mumol m-2 s-1) and with UV-B radiation. In contrast to a nontransformed strain the overall photosynthesis, measured as oxygen evolution, was protected from inhibition by light of 500 mumol m-2 s-1 and UV-B radiation of 6.8 W m-2. Furthermore, degradation in the light of chlorophyll and carotenoids at an irradiance of 1200 mumol m-2 s-1, which was substantial in the nontransformed control, was prevented. These results indicate that in situ canthaxanthin, which is formed at the expense of zeaxanthin and replaces this hydroxy carotenoid within the photosynthetic apparatus, is a better protectant against solar radiation. These findings are discussed on the basis of the in vitro properties such as inactivating peroxyl radicals, quenching of singlet oxygen and oxidation stability of these different carotenoid structures.  相似文献   

12.
The configurational isomers of astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) from the flesh of salmon (Salmo salar and Oncorhynchus) caught at different places in Europe and Canada were isolated and analyzed as (?)-camphanic acid diesters by means of HPLC. The biological variation in the composition of the configurational isomers in seven fish was surprisingly similar: 78 to 85% of (3S, 3′S)-astaxanthin, 12 to 17% (3R, 3′R)-astaxanthin and 2 to 6% meso-astaxanthin.  相似文献   

13.
A method is described for the qualitative and quantitative determination of configurational isomers of zeaxanthin (=3,3′ -dihydroxy-β, β -carotene) and lutein (=3,3′ -dihydroxy-α -cartotene). It is based on the reaction of these zeaxathin and lutein isomers with (S)-(+)-α-(1-naphthyl) ethyl isocyanate to afford diastereomeric dicarbamates, which are analyzed by HPLC.  相似文献   

14.
Abstract— The interaction of biological carotenoids with 3-hydroxymethyl-3,4,4-trimethyl-1,2-dioxetane (HTMD), a thermodissociable source of electronically excited ketones, was investigated using reversed-phase high-performance liquid chromatography. Incubation of the all-trans isomers of β-carotene, lycopene and canthaxanthin with HTMD led to significant trans-to-cis isomerization, with cis isomers accounting for 20–50% of products formed (the balance assigned as oxidation products). The isomers forming from all-trans-β-carotene were identified as 9-cis-, 13-cis- and 15-cis-β-carotene by cochromatography of cis isomer standards and by on-line diode array absorbance spectroscopy. An HTMD-dependent cis-to-trans isomerization was observed in incubations started with 15-cis-β-carotene, and it occurred more rapidly and to a greater extent than the isomerization of all-trans-β-carotene. The isomer patterns generated from lycopene and β-carotene are generally similar to those reported recently for various human tissues (Stahl et al, 1992, Arch. Biochem. Biophys. 294 , 173–177).  相似文献   

15.
The near-infrared luminescence of singlet oxygen (1O2) has been measured in order to determine the efficiency of 1O2 quenching by two carotenoid compounds, β-carotene and canthaxanthin. 1H-Phenalen-1-one and rose bengal have been used as photosensitizers in those steady-state luminescence experiments. Stern-Volmer analysis of the 1O2 luminescence in solutions of CCl4 and CD3OD, containing different concentrations of the carotenoids, has shown a very efficient quenching by canthaxanthin. The rate constants are about a factor of 2 below the diffusion limited values for the given solvents, confirming earlier results in benzene. In comparison, the efficiency of 1O2 quenching by β-carotene is slightly lower than that by canthaxanthin in non-polar solvents and is reduced by an order of magnitude in CD3OD, due to the aggregation of this quencher.  相似文献   

16.
Astaxanthin ( 1 ; 3,3′-dihydroxy-β,β-carotene-4,4′-dione) isolated from lobster eggs (Homarus gammarus) was unexpectedly found to be a mixture of all three optical isomers as determined by HPLC. analysis of the corresponding diesters of (–)-camphanic acid. This is the first finding of meso-astaxanthin and a meso-carotenoid in general in nature.  相似文献   

17.
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.  相似文献   

18.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

19.
Carotenoids from Hips of Rosa pomifera: Discovery of (5Z)-Neurosporene; Synthesis of (3R, 15Z)-Rubixanthin Extensive chromatographic separations of the mixture of carotenoids from ripe hips of R. pomifera have led to the identification of 43 individual compounds, namely (Scheme 2): (15 Z)-phytoene (1) , (15 Z)-phytofluene (2) , all-(E)-phytofluene (2a) , ξ-carotene (3) , two mono-(Z)-ξ-carotenes ( 3a and 3b ), (6 R)-?, ψ-carotene (4) , a mono-(Z)-?, ψ-carotene (4a) , β, ψ-carotene (5) , a mono-(Z)-β, ψ-carotene (5a) , neurosporene (6) , (5 Z)-neurosporene (6a) , a mono-(Z)-neurosporene (6b) , lycopene (7) , five (Z)-lycopenes (7a–7e) , β, β-carotene (8) , two mono-(Z)-β, β-carotenes (probably (9 Z)-β, β-carotene (8a) and (13 Z)-β, β-carotene (8b) ), β-cryptoxanthin (9) , three (Z)-β-cryptoxanthins (9a–9c) , rubixanthin (10) , (5′ Z)-rubixanthin (=gazaniaxanthin; 10a ), (9′ Z)-rubixanthin (10b) , (13′ Z)- and (13 Z)-rubixanthin (10c and 10d , resp.), (5′ Z, 13′ Z)- or (5′ Z, 13 Z)-rubixanthin (10e) , lutein (11) , zeaxanthin (12) , (13 Z)-zeaxanthin (12b) , a mono-(Z)-zeaxanthin (probably (9 Z)-zeaxanthin (12a) ), (8 R)-mutatoxanthin (13) , (8 S)-mutatoxanthin (14) , neoxanthin (15) , (8′ R)-neochrome (16) , (8′ S)-neochrome (17) , a tetrahydroxycarotenoid (18?) , a tetrahydroxy-epoxy-carotenoid (19?) , and a trihydroxycarotenoid of unknown structure. Rubixanthin (10) and (5′ Z)-rubixanthin (10a) can easily be distinguished by HPLC. separation and CD. spectra at low temperature. The synthesis of (3 R, 15 Z)-rubixanthin (29) is described. The isolation of (5 Z)-neurosporene (6a) supports the hypothesis that the ?-end group arises by enzymatic cyclization of precursors having a (5 Z)- or (5′ Z)-configuration.  相似文献   

20.
From the pollens of Aesculus hippocastanum, a new apocarotenoid was isolated as the main carotenoid and, based on the spectroscopic data, identified as (all-E,3R)-3-hydroxy-6′-apo-β-caroten-6′-al ( 4 , aesculaxanthin). In addition, (all-E)-lutein ( 3 ) and (all-E)-β-citraurin ( 5 ) were isolated. Furthermore, 6 (aesculaxanthol) was prepared by reduction of 4 with NaBH4 and tentatively identified as natural carotenoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号