首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
It is now possible to accurately synthesize thiolate (SR)‐protected gold clusters (Aun(SR)m) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Aun(SR)m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions.  相似文献   

2.
Phosphine‐initiated cation exchange is a well‐known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine‐initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core–shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed.  相似文献   

3.
Phosphine‐initiated cation exchange is a well‐known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine‐initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core–shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed.  相似文献   

4.
Homogeneous catalysis as the major industrial outlet of organometallic basic research has been enjoying great benefit from organotransition metal species that promote bond forming between hydrocarbon fragments. Most of the commercially important processes that serve to produce large-volume organic feedstock chemicals such as linear α-olefins (Shell Higher Olefins Process), linear aldehydes (hydroformylation), acetaldehyde (Wacker-Hoechst), acetic acid (Monsanto), adiponitrile (DuPont hydrocyanation of butadiene) operate at low-valent metal centers. It is thus hardly surprising that by far the most part of organometallic research during the past few decades has been directed towards an understanding and the improvement of these catalytic reactions as well as towards the related stoichiometric chemistry. As a matter of consequence, our present knowledge on high-valent organotransition metal compound is comparatively shallow, nor do we know much about the chemical relationship and interconvertability of high and low oxidation states within a given class of compounds. In this article I want to point out some ostensibly challenging perspectives of future organometallic research by describing a novel class of high oxidation state organorhenium compounds as well as by speculating on possible generalizations for other transition metals.  相似文献   

5.
Ion chemistry, first discovered 100 years ago, has profitably been coupled with statistical rate theories, developed about 80 years ago and refined since. In this overview, the application of statistical rate theory to the analysis of kinetic-energy-dependent collision-induced dissociation (CID) reactions is reviewed. This procedure accounts for and quantifies the kinetic shifts that are observed as systems increase in size. The statistical approach developed allows straightforward extension to systems undergoing competitive or sequential dissociations. Such methods can also be applied to the reverse of the CID process, association reactions, as well as to quantitative analysis of ligand exchange processes. Examples of each of these types of reactions are provided and the literature surveyed for successful applications of this statistical approach to provide quantitative thermochemical information. Such applications include metal-ligand complexes, metal clusters, proton-bound complexes, organic intermediates, biological systems, saturated organometallic complexes, and hydrated and solvated species.  相似文献   

6.
环钯化合物由于丰富的结构、高度的稳定性和卓越的催化性能,已成为钯化学研究的热点之一。迄今已开发出了C-H键活化、氧化加成、转金属化、亲核加成和配体交换等多种方法,可制备出从三元环到十一元环的CY型环钯化合物和多种YCY型环钯化合物。环钯化合物目前已应用于偶联、烯烃氢化和不对称催化等反应中。本文简单介绍了环钯化合物的种类,重点介绍了环钯化合物的合成方法和催化应用情况,最后提出了环钯化合物在今后合成研究和催化应用中的发展建议。  相似文献   

7.
This account describes our recent efforts devoted to gold chemistry since 2009. Based on furyl–Au 1,3‐dipole analogues and related gold carbene intermediates, a rich variety of gold‐catalyzed cascade reactions have been developed, which provide facile access to a diverse range of novel carbo‐ and heterocycles. In these reactions, the selectivity can be well controlled by the catalyst (ligand and metal), substrate or reagent. In addition, we have also developed the corresponding enantioselective variants, which are guided by bis(phosphinegold) complexes derived from axially chiral scaffolds and asymmetric gold/chiral Brønsted acid relay catalysis.  相似文献   

8.
Metal‐ligand cooperativity (MLC) had a remarkable impact on transition metal chemistry and catalysis. By use of the calix[4]pyrrolato aluminate, [ 1 ]?, which features a square‐planar AlIII, we transfer this concept into the p‐block and fully elucidate its mechanisms by experiment and theory. Complementary to transition metal‐based MLC (aromatization upon substrate binding), substrate binding in [ 1 ]? occurs by dearomatization of the ligand. The aluminate trapps carbonyls by the formation of C?C and Al?O bonds, but the products maintain full reversibility and outstanding dynamic exchange rates. Remarkably, the C?C bonds can be formed or cleaved by the addition or removal of lithium cations, permitting unprecedented control over the system's constitutional state. Moreover, the metal‐ligand cooperative substrate interaction allows to twist the kinetics of catalytic hydroboration reactions in a unique sense. Ultimately, this work describes the evolution of an anti‐van't Hoff/Le Bel species from their being as a structural curiosity to their application as a reagent and catalyst.  相似文献   

9.
《中国化学》2017,35(9):1349-1365
Transition‐metal catalyzed oxidation reactions are central components of organic chemistry. On behalf of green and sustainable chemistry, molecular oxygen (O2) has been considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characters, and therefore offers attractive academic and industrial prospects. In recent years, some powerful organic oxidation methods have been continuously developed. Among them, the use of molecular oxygen (O2) as a green and sustainable oxidant has attracted considerable attentions. However, the development of new transition metal‐catalyzed protocols using O2 as an ideal oxidant is highly desirable but very challenging because of the low standard electrode potential of O2 to reoxidize the transition‐metal catalysts. In this Account, we highlight some of our progress toward the use of transition‐metal catalyzed aerobic oxidation reactions. Through the careful selection of ligand and the acidic additives, we have successfully realized the reoxidation of Cu, Pd, Mn, Fe, Ru, Rh, and bimetallic catalysts under O2 or air atmosphere (1 atm) for the oxidative coupling, oxygenation reactions, oxidative C‐H/C‐C bond cleavage, oxidative annulation, and olefins difunctionalization reactions. Most of the reactions can tolerate a range of functional groups. These methods provide new strategies for the green synthesis of alkynes, (α ‐keto)amides/esters, ketones/diones, O/N‐heterocycles, β ‐azido alcohols, and nitriles. The high efficiency, low cost, and simple operation under air make these methodologies very attractive and practical. We will also discuss the mechanisms of these reactions which might be useful to promote the new type of aerobic oxidative reaction design.  相似文献   

10.
合金纳米团簇作为一类新兴的多功能纳米材料已被广泛用于催化、光学传感以及生物医学成像等研究领域,而纳米团簇的可控合成和结构特征是调节纳米团簇性质并对其进一步利用的基础。尽管当前有关金属纳米团簇可控合成和结构特征的研究主要集中在单金属纳米团簇中,但有关合金纳米团簇原子精度的可控合成也取得了显著的进展。本文综述了配体保护的合金金属纳米团簇原子精度可控合成策略,包括一步合成法、金属交换、配体交换、化学刻蚀、簇间反应、原位两相配体交换以及最新的表面模体交换反应,并对相关合成策略的优缺点进行了详细的讨论和阐述。  相似文献   

11.
This paper describes reactions in which ligands are exchanged and metals are transferred between monolayer-protected metal clusters (MPCs) that are in different phases (heterophase exchange) or are in the same phase. For example, contact of toluene solutions of alkanethiolate-coated gold MPCs with aqueous solutions of tiopronin-coated gold MPCs yields toluene-phase MPCs that have some tiopronin ligands and aqueous-phase MPCs that have some alkanethiolate ligands. In a second example, heterophase transfer reactions occur between toluene solutions of alkanethiolate-coated gold MPCs and aqueous solutions of tiopronin-coated silver MPCs, in which tiopronin ligands are transferred to the former and gold metal to the latter phase. These ligand and metal exchange reactions are inhibited when conducted under N(2). The results implicate participation of an oxidized form of Au (such as a Au(I) thiolate, Au(I)-SR) as both a ligand and metal carrier in the exchange reactions. Au(I)-SR is demonstrated to be an exchange catalyst.  相似文献   

12.
The organocalcium chemistry developed vastly during the last decade. The preparation of the organocalcium compounds via direct synthesis (insertion of Ca into a C‐X bond of phenyl halides, Grignard reaction) affords skilful procedures due to the inertia of the calcium metal and the extreme reactivity of the organocalcium derivatives. Further suitable preparative methods include metathesis reactions of CaX2 with KR or LiR, metallation reactions of H‐acidic substrates, metal‐halogen exchange reactions, and transmetallation of heavy main group atoms in their compounds with calcium metal. Possibilities to stabilize organocalcium compounds include steric shielding by bulky ligands at the periphery and electronic reduction of the nucleophilicity of the calcium‐bound carbanions. Selected applications in catalysis such as hydrophosphination are also mentioned. Very recent developments and challenges in the preparation of alkaline earth metal(I) compounds are presented as well. Concepts to overcome the rather large atomization energies of the metals are discussed.  相似文献   

13.
Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first “naked” (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.  相似文献   

14.
Trinuclear clusters of the early transition elements, i.e. those elements situated on the left-hand side of the transition series, represent the simplest types of clusters. They characteristically have a pronounced formation tendency and high stability; they are therefore produced under a wide variety of conditions and their triangular M3 skeleton is conserved in ligand exchange reactions. These clusters play a very important role in the chemistry of the respective elements, and especially those of the 4 d and 5 d series. Biochemical implications are of interest in connection with MoIV. This progress report presents a systematic account of the chemistry and the molecular and electronic structure of such compounds. A connection is also established with the crystal field treatment of mononuclear metal complexes.  相似文献   

15.
The physical properties and the chemical reactivity of the porphyrin macrocycle, whose formation can be rationalized by a simple statistical argument, are related in many respects to those of aromatic hydrocarbons. The reactivity of the porphyrin ligand in its metal complexes varies within wide limits because of the difference in the inductive effects of different central metal ions on the conjugated π-electron system. One-electron reactions, phlorin formation by addition of hydrogen or oxygen to the methine bridges, and the formation of π complexes predominate. The biochemical reactivity of the porphyrin ligand largely corresponds to its in-vitro chemistry.  相似文献   

16.
The organometallic chemistry of manganese in the +2 oxidation state is distinct from the organometallic chemistry of a 'typical' transition metal due to a significant ionic contribution to the manganese(II)-carbon bonds. The reduced influence of covalency and the 18-electron rule result in organomanganese(II) cyclopentadienyl, alkyl and aryl complexes possessing reactivity and structural diversity that is unique in organotransition metal chemistry. Recently, this unusual reactivity has resulted in a range of novel applications in selective organometallic and organic synthesis, and polymerization catalysis. This tutorial review summarizes key milestones in the development of manganese(II) organometallics and discusses how some of their current synthetic applications have evolved from many fascinating fundamental studies in the area.  相似文献   

17.
C-N键广泛存在于药物、天然产物和功能材料中,而氮中心自由基在C-N键的构建中起到关键作用.但是,与广泛使用的碳中心自由基相比,氮中心自由基由于缺乏实用简便的产生方法而尚未得到充分研究.因此,发展高效的氮中心自由基引发反应迫在眉睫.在过去的几年里,得益于可信赖且可控制的自由基化学的兴起,可以通过热分解、氧化剂促进、金属...  相似文献   

18.
A new synthetic route to complexes of the cationic N‐heterocyclic carbene ligand 2 has been developed by the attachment of a cationic pentamethylcyclopentadienylruthenium ([RuCp*]+) fragment to a metal‐coordinated benzimidazol‐2‐ylidene ligand. The coordination chemistry and the steric and electronic properties of the cationic carbene were investigated in detail by experimental and theoretical methods. X‐ray structures of three carbene–metal complexes were determined. The cationic ligand 2 is a poorer overall electron donor relative to the related neutral carbene, which is evident from cyclic voltammetry (CV) and IR measurements.  相似文献   

19.
The activation of element–hydrogen bonds by means of metal–ligand cooperation has received increasing attention as alternative to classical activation processes, which exclusively occur at the metal center. Carbene complexes derived from methandiide precursors have been applied in this chemistry enabling the activation of a series of E?H bonds by addition reactions across the M?C bond. However, no chiral carbene complexes have been applied to realize stereoselective transformations to date. Herein, we report the isolation and structure elucidation of an enantiomerically pure dilithiomethane, which could be prepared by direct double deprotonation. The obtained dilithium salt was used for the preparation of the first chiral methandiide‐derived carbene complex, which was applied in stereoselective cooperative S?H bond activation.  相似文献   

20.
In both physics and chemistry, increased attention is being paid to metal clusters. One reason for this attitude is furnished by the surprising results that have been obtained from studies of the preparation, structural characterization and physical and chemical properties of the clusters. Whereas investigations of cluster reactivity are at present generally limited to three- or four-membered clusters, successful syntheses of clusters with many more metal atoms have recently been designed. These substances occupy an intermediate position between solid state chemistry and the chemistry of metal complexes. This review presents a versatile method for synthesizing metal clusters: the reaction of complexes of transition metal halides with silylated compounds such as E(SiMe3)2 (E = S, Se, Te) and E′R(SiMe3)2 (R = Ph, Me, Et; E′ = P, As, Sb). Although some of the compounds thus formed have already been prepared by other routes, the method affords ready access to both small and large transition metal clusters with unusual structures and valence electron concentrations; a variety of reactions in the ligand sphere are also possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号