首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The efficiency of the collision-induced dissociation (CID) process as a function of the internal energy deposited into the ion during the ionization event was evaluated. (M + H)+ ions of pyrrole, pyrrolidine, pyridine and piperidine (five and six-membered ring heterocyclics) were generated by chemical ionization (CI). The internal energy of the ions was varied by using different reagent gases. Both high-energy (keV) and low-energy (eV) CID were performed on these ions. The experiments showed that the (M + H)+ ions of the five-membered ring compounds, pyrrole and pyrrolidine, have higher fragmentation efficiencies than the six-membered ring compounds, pyridine and piperidine. Fragmentation efficiencies in high-energy CID clearly correlate with the internal energy deposited by the ionization technique. Experiments showed that the low-energy CID process is more sensitive than high-energy CID to changes in internal energy.  相似文献   

2.
Surface-induced dissociation (SID) and collision-induced dissociation (CID) are ion activation techniques based on energetic collisions with a surface or gas molecule, respectively. One noticeable difference between CID and SID is that SID does not require a collision gas for ion activation and is, therefore, directly compatible with the high vacuum requirement of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Eliminating the introduction of collision gas into the ICR cell for collisional activation dramatically shortens the acquisition time for MS/MS experiments, suggesting that SID could be utilized for high-throughput MS/MS studies in FT-ICR MS. We demonstrate for the first time the utility of SID combined with FT-ICR MS for protein identification. Tryptic digests of standard proteins were analyzed using a hybrid 6-tesla FT-ICR mass spectrometer with SID and CID capabilities. SID spectra of mass-selected singly and doubly charged peptides were obtained using a diamond-coated target mounted at the rear trapping plate of the ICR cell. The broad internal energy distribution deposited into the precursor ion following collision with the diamond surface allowed a variety of fragmentation channels to be accessed by SID. Composition and sequence qualifiers produced by SID of tryptic peptides were used to improve the statistical significance of database searches. Protein identification MASCOT scores obtained using SID were comparable or better than scores obtained using sustained off-resonance irradiation collision-induced dissociation (SORI-CID), the conventional ion activation technique in FT-ICR MS.  相似文献   

3.
A novel tandem quadrupole mass spectrometer is described that enables gaseous collision-induced dissociation (CID) and surface-induced dissociation (SID) experiments. The instrument consists of a commercially available triple quadrupole mass spectrometer connected to an SID region and an additional, orthogonal quadrupole mass analyser. The performance of the instrument was evaluated using leucine-enkephalin, allowing a comparison between CID and SID, and with previous reports of other SID instruments. The reproducibility of SID data was assessed by replicate determinations of the collision energy required for 50% dissociation of leucine-enkephalin; excellent precision was observed (standard deviation of 0.6 eV) though, unexpectedly, the reproducibility of the equivalent figure for CID was superior. Several peptides were analysed using SID in conjunction with liquid secondary-ion mass spectrometry or electrospray; a comparison of the fragmentation of singly protonated peptide ions and the further dissociation of y-type fragments was consistent with the equivalence of the latter fragments to protonated peptides. Few product ions attributable to high-energy cleavages of amino acid side-chains were observed. The SID properties were investigated of a series of peptides differing only in the derivatization of a cysteine residue; similar decomposition efficiencies were observed for all except the cysteic acid analogue, which demonstrated significantly more facile fragmentation.  相似文献   

4.
Structure differentiation between [C5H8]+˙ ions, formed by electron ionization of various precursors, has been used as a test case for comparison of three experimental techniques involving collision-induced dissociation (CID). Low-energy CID in an rf-only quadrupole collision cell has been studied in the range 1–150 eV laboratory collision energy. These data have been compared with those obtained using mass-analyzed ion kinetic energy spectroscopy at 8 keV energy, and with results from dissociative charge-stripping (DCS) coupled with a second electron capture collision (EC) in order to remove intense interferences (DCS/EC). The greatest degree of structure differentiation was possible using the DCS/EC technique. The other two methods were comparable in this regard, although effects of pre-collision internal energy was apparent for collision energies much below 30 eV. Day-to-day reproducibility of spectra was most difficult to obtain for the low-energy CID technique. Of the [C5H8]+˙ ions thus tested, the isoprene molecular ion was clearly the best match to the fragment ion formed from limonene.  相似文献   

5.
New substituted 2-amino-3-cyano-4H-pyrans have been studied by electron ionization (EI), chemical ionization (CI) and electrospray ionization (ESI) mass spectrometry. The retro-Diels-Alder reaction (RDA) is the main fragmentation pattern observed in the EI spectra forming an unsaturated ketone as the diene fragment. In contrast, a different RDA reaction takes place yielding an unsaturated amide as diene fragment together with the unsaturated ketone in the CI spectra. The MS/MS spectra obtained using an ESI source reveal that the favoured fragmentation by collision induced dissociation (CID) is the elimination of the substituent at the C4 position with formation of a stable pyrilium cation.  相似文献   

6.
The unimolecular dissociation dynamics of aluminum clusters following collision with either a rare gas atom or a surface is investigated by classical trajectory simulations with model potentials. Two conformers of Al(6) with very distinct shapes, i.e., the spherical O(h) and planar C(2)(h) clusters, are considered in this work. The initial vibrational energy and angular momentum distributions resulting from collision, as well as the energy and angular momentum resolved lifetime distributions, of excited clusters were determined for both collision-induced dissociation (CID) and surface-induced dissociation (SID) processes. The partitioning of excitation energy acquired upon collision was found to depend on the excitation mechanism (CID or SID), as well as on the cluster molecular shape, especially in the case of CID. For both types of processes, the energy and angular momentum resolved excited cluster lifetime distributions were found to decay exponentially, in agreement with statistical theories of chemical reactions, suggesting intrinsic Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. Moreover, the simulated microcanonical rate constants determined from the cluster lifetime distributions are in good agreement with the predictions of the orbiting transition state model of phase space theory (OTS/PST), which further supports the statistical character of cluster CID and SID. Thus, in the CID and SID of highly fluxional systems such as aluminum clusters, the rate of intramolecular vibrational energy redistribution (IVR) is much faster than the dissociation rate, which validates one of the key assumptions, i.e., post-collision statistical behavior, underlying the models that are routinely used to determine cluster binding energies from experimental CID/SID cross sections.  相似文献   

7.
Internal energy deposition into iron pentacarbonyl positive ions undergoing surface-induced dissociation (SID) in a Fourier transform mass spectrometer is estimated from the abundances and known critical energies of the product fragment ions. A narrow energy distribution, comparable to that reported in earlier BQ and tandem quadrupole SID studies of the same compound, is observed. As judged by the ratio of fragment ions to incident parent ions observed, SID of iron pentacarbonyl in the 3 T Fourier transform mass spectrometer is more efficient, but results in lower conversion of laboratory to internal energy. This may be a result of the more shallow collision incidence angle employed in the Fourier transform mass spectrometer measurements (a few degrees), which contrasts with the 32–60° collision angles used in the earlier BQ and tandem quadrupole mass spectrometry studies. Collision-induced dissociation with He under single collision conditions is also reported, Not unexpectedly, conversion of kinetic to internal energy was lower than found in a previous Fourier transform mass spectrometer study of the iron pentacarbonyl cation employing argon as collision gas under multiple collision conditions.  相似文献   

8.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

9.
The implementation of surface-induced dissociation (SID) to study the fast dissociation kinetics (sub-microsecond dissociation) of peptides in a MALDI TOF instrument has been reported previously. Silicon nanoparticle assisted laser desorption/ionization (SPALDI) now allows the study of small molecule dissociation kinetics for ions formed with low initial source internal energy and without MALDI matrix interference. The dissociation kinetics of N(CH3)4+ and N(CD3)4+ were chosen for investigation because the dissociation mechanisms of N(CH3)4+ have been studied extensively, providing well-characterized systems to investigate by collision with a surface. With changes in laboratory collision energy, changes in fragmentation timescale and dominant fragment ions were observed, verifying that these ions dissociate via unimolecular decay. At lower collision energies, methyl radical (CH3) loss with a sub-microsecond dissociation rate is dominant, but consecutive H loss after CH3 loss becomes dominant at higher collision energies. These observations are consistent with the known dissociation pathways. The dissociation rate of CH3 loss from N(CH3)4+ formed by SPALDI and dissociated by an SID lab collision energy of 15 eV corresponds to log k = 8.1, a value achieved by laser desorption ionization (LDI) and SID at 5 eV. The results obtained with SPALDI SID and LDI SID confirm that (1) the dissociation follows unimolecular decay as predicted by RRKM calculations; (2) the SPALDI process deposits less initial energy than LDI, which has advantages for kinetics studies; and (3) fluorinated self-assembled monolayers convert about 18% of laboratory collision energy into internal energy. SID TOF experiments combined with SPALDI and peak shape analysis enable the measurement of dissociation rates for fast dissociation of small molecules.  相似文献   

10.
Energy-resolved mass spectrometry (ERMS) has been used to distinguish [C2H4O2]+˙ ions generated from seven precursor molecules. The low collision energy ERMS data confirm conclusions reached from previous high-energy experiments; all seven ions have different structures or mixtures of structures. Structural distinctions are at least as easy to make using the two-dimensional ERMS data as through collisional activation at high energy. The average internal energy deposited in low-energy collisions (30 eV) is shown to be similar to the internal energy deposited at 8 keV in these systems.  相似文献   

11.
Time- and collision energy-resolved surface-induced dissociation (SID) of ternary complexes of Co(III)(salen)+, Fe(III)(salen)+, and Mn(III)(salen)+ with several angiotensin peptide analogues was studied using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled using an RRKM-based approach developed in our laboratory. The approach utilizes a very flexible analytical expression for the internal energy deposition function that is capable of reproducing both single-collision and multiple-collision activation in the gas phase and excitation by collisions with a surface. The energetics and dynamics of competing dissociation pathways obtained from the modeling provides important insight on the competition between proton transfer, electron transfer, loss of neutral peptide ligand, and other processes that determine gas-phase fragmentation of these model systems. Similar fragmentation behavior was obtained for various Co(III)(salen)-peptide systems of different angiotensin analogues. In contrast, dissociation pathways and relative stabilities of the complexes changed dramatically when cobalt was replaced with trivalent iron or manganese. We demonstrate that the electron-transfer efficiency is correlated with redox properties of the metal(III)(salen) complexes (Co > Fe > Mn), while differences in the types of fragments formed from the complexes reflect differences in the modes of binding between the metal-salen complex and the peptide ligand. RRKM modeling of time- and collision-energy-resolved SID data suggests that the competition between proton transfer and electron transfer during dissociation of Co(III)(salen)-peptide complexes is mainly determined by differences in entropy effects while the energetics of these two pathways are very similar.  相似文献   

12.
The collision-induced decomposition (CID) mass spectra of the protonated and cationized molecules of a number of carbohydrate antibiotics of RMM ranging from 700 to 1500 were studied by means of a four-sector mass spectrometer with a floated collision cell. Helium and argon were used as collision gases. This work illustrates that cationized rather than protonated carbohydrate antibiotics give an increased yield of high-mass ions of diagnostic value. Further, when helium is replaced by argon as collision gas, differences in the CID spectra of MH+ ions become apparent only for molecules of RMM > 1400 whereas for [M + Na]+ ions differences are observed for molecules of RMM as low as 1000. These results have been attributed to the deposition of more internal energy in the precursor ion when argon is used, resulting in increased fragmentation.  相似文献   

13.
The simultaneous resonant low-energy excitation of leucine enkephalin and its fragment ions was demonstrated in a collision cell of the multipole-quadrupole time-of-flight instrument. Using low-amplitude multiple-resonance excitation CID, we were able to show the exclusive sequential fragmentation of N- and C-terminus fragments all the way to the final fragments--immonium ions of phenylalanine or tyrosine. In this CID mode the single-channel dissociation of each new generation of fragments followed the lowest energy decomposition pathways observable on the time scale of our experiment. Up to six generations of sequential dissociation were carried out in multiple-resonance CID experiments. The direct qualitative comparison of fragmentation of axial-acceleration versus resonant (radial) CID was performed in the same instrument. In both activation methods, fragmentation patterns suggested complex decomposition mechanisms attributable to dynamic competition between sequential and parallel dissociation channels.  相似文献   

14.
The mass spectrometric behavior of stereo- and regioisomeric, partially saturated isoindoloquinazolines was studied by positive-ion electron ionization (EI) and fast-atom bombardment (FAB/LSIMS) mass spectrometry combined with collision-induced dissociation (CID). A highly stereospecific retro-Diels-Alder process was observed in the cyclohexene-fused isomers under the EI conditions, and a corresponding (although less specific) fragmentation was observed in their FAB spectra. In the absence of RDA fragmentations, regio- and stereoisomers of the cyclohexane-fused heterocycles could be distinguished based on their FAB/CID spectra.  相似文献   

15.
Kinetic isotope effects (KIEs) occurring in mass spectrometry (MS) can provide in‐depth insights into the fragmentation behaviors of compounds of interest in MS. Yet, the fundamentals of KIEs in collision‐induced dissociation (CID) in tandem mass spectrometry (MS/MS) are unclear, and information about chlorine KIEs (Cl‐KIEs) of organochlorines in MS is particularly scarce. This study investigated the Cl‐KIEs of dichloromethane, trichloroethylene, and tetrachloroethylene during CID using gas chromatography‐electron ionization triple‐quadrupole MS/MS. Cl‐KIEs were evaluated with MS signal intensities. All the organochlorines presented large inverse Cl‐KIEs (<1, the departures of Cl‐KIEs from 1 denote the magnitudes of Cl‐KIEs), showing the largest magnitudes of 0.797, 0.910, and 0.892 at the highest collision energy (60 eV) for dichloromethane, trichloroethylene, and tetrachloroethylene, respectively. For dichloromethane, both intra‐ion and inter‐ion Cl‐KIEs were studied, within the ranges of 0.820–1.020 and 0.797–1.016, respectively, showing both normal and inverse Cl‐KIEs depending on collision energies. The observed Cl‐KIEs generally declined from large normal to extremely large inverse values with increasing collision energies from 0 to 60 eV but were inferred to be independent of MS signal intensities. The Cl‐KIEs are dominated by critical energies at low internal energies of precursor ions, resulting in normal Cl‐KIEs; while at high internal energies, the Cl‐KIEs are controlled by rotational barriers (or looseness/tightness of transition states), which lead to isotope‐competitive reactions in dechlorination and thereby inverse Cl‐KIEs. It is concluded that the Cl‐KIEs may depend on critical energies, bond strengths, available internal energies, and transition state looseness/tightness. The findings of this study yield new insights into the fundamentals of Cl‐KIEs of organochlorines during CID and may be conducive to elucidating the underlying mechanisms of KIEs in collision‐induced and photo‐induced reactions in the actual world.  相似文献   

16.
Dramatically different fragmentation patterns are obtained for 4-ethyl-2,6,7-trioxa-1-phosphabicyclo-[2.2.2]octane-1-oxide upon electron ionization (EI) and for the corresponding molecular ion on collision-induced dissociation (CID). Two reasons for this behaviour have been discovered. (i) Irreversible multistep isomerization of the molecular ions occurs prior to collisional activation in mass spectrometry/mass spectrometry (MS/MS). Isomerization reactions have been characterized by isotopic labelling and by examining structures of relevant unlabelled and labelled fragment ions by MS/MS. The extent of isomerization can be controlled by varying the amount of internal energy of the molecular ions. This has been done by changing the number of thermalizing collisions which the ions undergo with neutral molecules in the ion source. (ii) When multiple collisions are used to dissociate the molecular ions, the initially stable fragmentation products undergo extensive further decomposition. As a result, abundant phosphorus-containing fragment ions are obtained for the bicyclic phosphate in high-pressure CID, whereas electron ionization leads to predominant hydrocarbon ions. A minor change in the structure of this molecule has major effects on the fragmentation behaviour: high- and low-energy collisional activation spectra of the molecular ion of the corresponding phosphite are identical with the 12 e V EI mass spectrum of the neutral.  相似文献   

17.
High-energy collision-induced dissociation (CID) experiments on polycyclic aromatic hydrocarbons (PAHs) having 2-6 rings, naphthalene, anthracene, phenanthrene, fluoranthene, pyrene and coronene, were performed, and the relative abundances of their fragment ions were investigated as a function of collision energy. The results revealed that the PAHs except naphthalene showed a bimodal-type distribution of positive fragmentation ions, which is closely similar to the fragment-ion distribution reported for the CID of three-dimensional fullerene, C(60)(+) and C(70)(+). The three-ring isomers of anthracene and phenanthrene and the four-ring isomers of fluoranthene and pyrene can be distinguishable in their spectra under an electron ionization energy of 70 eV, but the high-energy CID spectra of the three- and four-ring isomers were almost identical. The fragmentation corresponding to fragment ions in the low-mass region of the bimodal CID spectra could be interpreted by the simple statistical model that fragment ions are formed by random evaporation from the molecular ions after a considerable structural rearrangement, 'phase transition', occurring at some high-energy state.  相似文献   

18.
Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision‐induced dissociation (CID), pulsed Q dissociation (PQD) and higher‐energy collision dissociation (HCD)] of Orbitrap‐based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice–Rampserger–Kassel–Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model. This model treats consecutively the activation and decomposition steps, and the survival precursor ion populations are characterized by truncated Maxwell–Boltzmann internal energy distributions. This study demonstrates that the activation time has a significant impact on MS/MS spectra using the CID and PQD modes. The proposed model seems suitable to describe the multiple collision regime in the PQD and HCD modes. Linear relationships between mean internal energy and collision voltage are shown for the latter modes and the three thermometer molecules. These results suggest that a calibration based on the collision voltage should provide reproducible for PQD, HCD to be compared with CID in tandem in space instruments. However, an important signal loss is observed in PQD excitation mode whatever the mass of the studied compounds, which may affect not only parent ions but also fragment ions depending on the fragmentation parameters. A calibration approach for the CID mode based on the variation of activation time parameter is more appropriate than one based on collision voltage. In fact, the activation time parameter in CID induces a modification of the collisional regime and thus helps control the orientation of the fragmentation pathways (competitive or consecutive dissociations). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30–50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60° with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.  相似文献   

20.
Data are reported on the effects of internal energy and angular momentum on the collision induced dissociation CID fragmentation pattern. For the ions studied changes in the relative intensities of the fragment ions as internal energy varied were found to be larger than suggested by McLafferty and coworkers. Possible effects of angular momentum on the CID fragmentation pattern are discussed. The charge stripping spectra of the ions studied were found to be strongly dependent on initial energy and/or angular momentum. Hence care must be taken if charge stripping spectra are used to distinguish ion structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号