首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolff-Kishner reduction of 3-amino-4-(o-chlorobenzoyl)pyridine ( 3 ) afforded 3-amino-4-(o-chlorobenzyl)pyridine ( 5 ), which on subsequent reaction with triethyl orthoformate and then acetyl hydrazide yielded 1-acetyl-2-[N-[4-(o-chlorobenzyl)pyridin-3-yl]formimidoyl]hydrazone ( 7 ). Cyclization of hydrazone 7 gave 3-(3-methyl-4H-1,2,4-triazol-4-yl)-4-(o-chlorobenzyl)pyridine ( 8 ), which on Jones oxidation yielded 3-(3-methyl-4H-1,2,4-triazol-4-yl)-4-(o-chlorobenzyl)pyridine ( 9 ). The Mannick reaction of 3-(3-methyl-4H-l,2,4-triazol-4-yl)-4-(o-chlorobenzyl)pyridine ( 9 ) with aqueous formalin and dimethylamine hydrochloride afforded 3-[3-[(dimethylamino)methyl]-5-methyl-4H-1,2,4-triazol-4-yl]-4-(o-chlorobenzoyl)-pyridine ( 10 ). 3-[3-[(Dimethylamino)methyl]-5-methyl-4H-1,2,4-triazol-4-yl]-4-(o-chlorobenzoyl)pyridine ( 10 ) exhibited good anticonvulsant activity in the subcutaneous pentylenetetrazole anticonvulsant screen indi cating that an appropriately substituted-pyridine ring moiety can serve as a bioisostere of a chlorobenzene ring with respect to anticonvulsant activity.  相似文献   

2.
Ring Transformation of Imidazolidine-2,4-diones ( = Hydantoins) to 4H-Imidazoles in the Reaction with 3-(Dimethylamino)-2,2-dimethyl-2H-azirines At ca. 70°, 3-(dimethylamino)-2,2-dimethyl-2H -azirine ( 1 ) and 5,5-disubstituted hydantoins 4 in MeCN or i-PrOH give 2-(1-aminoalkyl)-5-(dimethylamino)-4,4-dimethyl-4H -imidazoles 5 in good yield (Scheme 2). These products are decarboxylated 1:1 adducts of 1 and 4 . A reaction mechanism is suggested in analogy to the previously reported reactions of 1 and NH-acidic heterocycles containing the CO? NH? CO? NH moiety (Scheme 5). The formation of ureas 6 and 7 can be rationalized by trapping the intermediate isocyanate F by an amine. No reaction is observed between 1 and 1,5,5- or 3,5,5-trisubstituted hydantoins in refluxing MeCN or i-PrOH, but an N-isopropylation of 1,5,5-trimethylhydantoin ( 8b ) occurs in the presence of morpholine (Scheme 3). The reaction of the bis(azirine)dibromozink complex 11 and hydantoines 4 in refluxing MeCN yields zink complexes 12 of the corresponding 2-(1-aminoalkyl)-4H -imidazoles 5 (Scheme 4).  相似文献   

3.
Reactions of 3-(Dimethylamino)-2,2-dimethyl-2H-azirines with Barbituric-Acid Derivatives The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and 5,5-disubstituted barbituric acids 5 in i-PrOH at ca. 70° gives 2-[5-(dimethylamino)-4,4-dimethyl-4H-imidazol-2-yl]alkanamides of type 6 in good yields (Scheme 1). The formation of 6 proceeds with loss of CO2; various reaction mechanisms with a zwitterionic 1:1 adduct B as common intermediate are discussed (Schemes 2 and 5). Thermolysis of product 6 leads to 2-alkyl-5-(dimethylamino)-4,4-dimethyl-4H-imidazoles 8 or the tautomeric 2-alkylidene derivatives 8 ′ via elimination of HNCO (Scheme 3). The latter undergoes trimerization to give 1,3,5-triazine-2,4,6-trione. No reaction is observed with 1,5,5-trisubstituted barbiturates and 1 in refluxing i-PrOH, but an N-alkylation of the barbiturate occurs in the presence of morpholine (Scheme 4). This astonishing reaction is explained by a mechanism via formation of the 2-alkoxy-2-(dimethylamino )aziridinium ion H which undergoes ring opening to give the O-alkylated 2-amino-N1,N1-dimethylisobutyramide I as alkylating reagent (Scheme 4).  相似文献   

4.
In silico evaluation of various regioisomeric 5- and 3-hydroxy-substituted alkyl 1-aryl-1H-pyrazole-4-carboxylates and their acyclic precursors yielded promising results with respect to their binding in the active site of dihydroorotate dehydrogenase of Plasmodium falciparum (PfDHODH). Consequently, four ethyl 1-aryl-5-hydroxy-1H-pyrazole-4-carboxylates and their 3-hydroxy regioisomers were prepared by two-step syntheses via enaminone-type reagents or key intermediates. The synthesis of 5-hydroxy-1H-pyrazoles was carried out using the literature protocol comprising acid-catalyzed transamination of diethyl [(dimethylamino)methylene]malonate with arylhydrazines followed by base-catalyzed cyclization of the intermediate hydrazones. For the synthesis of isomeric methyl 1-aryl-3-hydroxy-1H-pyrazole-4-carboxylates, a novel two-step synthesis was developed. It comprises acylation of hydrazines with methyl malonyl chloride followed by cyclization of the hydrazines with tert-butoxy-bis(dimethylamino)methane. Testing the pyrazole derivatives for the inhibition of PfDHODH showed that 1-(naphthalene-2-yl)-5-hydroxy-1H-pyrazole-4-carboxylate and 1-(naphthalene-2-yl)-, 1-(2,4,6-trichlorophenyl)-, and 1-[4-(trifluoromethyl)phenyl]-3-hydroxy-1H-pyrazole-4-carboxylates (~30% inhibition) were slightly more potent than a known inhibitor, diethyl α-{[(1H-indazol-5-yl)amino]methylidene}malonate (19% inhibition).  相似文献   

5.
Alkyl 3-(2-aminoethyl)-1H-indole-2-acetates 6a and 6b are synthesized starting from methyl 1H-indole-2-acetate (2) via methyl 3-(2-nitroethenyl)-1H-indole-2-acetate (4) and the alkyl 3-(2-nitroethyl)-1H-indole-2-acetates 5a and (Scheme 1). Analogously, diisopropyl 3-(2-aminoethyl)-1H-indole-2-malonate 20b is obtained from diisopropyl 1H-indole-2-malonate 11c (Scheme 4). An alternative synthesis of 20a and 20b follows a route via 15–18 and the dialkyl 3-(2-azidoethyl)-1H-indole-2-malonates 19a and 19b , respectively (Scheme 3). The aminoethyl compounds 6a and 20a are easily transformed into lactams 7 and 21 , respectively. Procedures for the preparation of the indoles 2 and 11a and of the alkylating agent 14 are described. A tautomer 12 of 11a is isolated.  相似文献   

6.
15N-Labelled 3-(Dimethylamino)-2,2-dimethyl-2H-azirine for Mechanistic Studies of Reactions with NH-Acidic Heterocycles The synthesis of 3-(dimethylamino)-2,2-dimethyl(1-15N)-2H-azirine ( 1 *) was accomplished via reaction of 1-chloro-N,N,2-trimethyl-1-propenylamine ( 9 ) and sodium (1-15N) azide (Scheme 3). The earlier reported reactions of 1 with saccharin ( 10 , Scheme 4), phthalimide ( 12 , Scheme 5), and 2H-1,3-benzoxazin-2,4(3H)-dione ( 16 , Scheme 6) were repeated with 1 *, and the position of the 15N-label in the products was determined by 15N-NMR spectroscopy. Whereas the postulated reaction mechanisms for 10 and 12 were confirmed by these experiments, the mechanism for the reaction of 16 had to be revised. With respect to the position of 15N in the products 17 and 18 , a new mechanism is formulated in Scheme 7. Treatment of 5,5-dimethyl-1,3-oxazolidine-2,4-dione ( 19 ) with 1 * led to 3,4-dihydro-2H-imidazol-2-on 20 in which only N(3) was labelled. The mechanism of a ring expansion and transannular ring contraction as shown in Scheme 8 is in agreement with this finding.  相似文献   

7.
Synthesis and Reactions of 8-membered Heterocycles from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Saccharin or Phthalimide 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts at 0-20° with the NH-acidic compounds saccharin ( 2 ) and phthalimide ( 8 ) to give the 8-membered heterocycles 3-dimethylamino-4,4-dimethyl-5,6-dihydro-4 H-1,2,5-benzothiadiazocin-6-one-1,1-dioxide ( 3a ) and 4-dimethylamino-3,3-dimethyl-1,2,3,6-tetrahydro-2,5-benzodiazocin-1,6-dione ( 9 ), respectively. The structure of 3a has been established by X-ray (chap. 2). A possible mechanism for the formation of 3a and 9 is given in Schemes 1 and 4. Reduction of 3a with sodium borohydride yields the 2-sulfamoylbenzamide derivative 4 (Scheme 2); in methanolic solution 3a undergoes a rearrangement to give the methyl 2-sulfamoyl-benzoate 5 . The mechanism for this reaction as suggested in Scheme 2 involves a ring contraction/ring opening sequence. Again a ring contraction is postulated to explain the formation of the 4H-imidazole derivative 7 during thermolysis of 3a at 180° (Scheme 3). The 2,5-benzodiazocine derivative 9 rearranges in alcoholic solvents to 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl) benzoates ( 10 , 11 ), in water to the corresponding benzoic acid 12 , and in alcoholic solutions containing dimethylamine or pyrrolidine to the benzamides 13 and 14 , respectively (Scheme 5). The reaction with amines takes place only in very polar solvents like alcohols or formamide, but not in acetonitrile. Possible mechanisms of these rearrangements are given in Scheme 5. Sodium borohydride reduction of 9 in 2-propanol yields 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl)benzyl alcohol ( 15 , Scheme 6) which is easily converted to the O-acetate 16 . Hydrolysis of 15 with 3N HCl at 50° leads to an imidazolinone derivative 17a or 17b , whereas hydrolysis with 1N NaOH yields a mixture of phthalide ( 18 ) and 2-hydroxymethyl-benzoic acid ( 19 , Scheme 6). The zwitterionic compound 20 (Scheme 7) results from the hydrolysis of the phthalimide-adduct 9 or the esters 11 and 12 . Interestingly, compound 9 is thermally converted to the amide 13 and N-(1′-carbamoyl-1′-methylethyl)phthalimide ( 21 , Scheme 7) whose structure has been established by an independent synthesis starting with phthalic anhydride and 2-amino-isobutyric acid. However, the reaction mechanism is not clear at this stage.  相似文献   

8.
3-(Dimethylamino)-2,2-dimethyl-2H,-azirine as an α-Aminoisobutyric-Acid (Aib) Equivalent: Cyclic Depsipeptides via Direct Amid Cyclization In MeCN at room temperature, 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and α-hydroxycarboxylic acids react to give diamides of type 8 (Scheme 3). Selective cleavage of the terminal N,N-dimethylcarboxamide group in MeCN/H2O leads to the corresponding carboxylic acids 13 (Scheme 4). In toluene/Ph SH , phenyl thioesters of type 11 are formed (see also Scheme 5). Starting with diamides 8 , the formation of morpholin-2,5- diones 10 has been achieved either by direct amide cyclization via intermediate 1,3-oxazol-5(4H)-ones 9 or via base-catalyzed cyclization of the phenyl thioesters 11 (Scheme 3). Reaction of carboxylic acids with 1 , followed by selective amide hydrolysis, has been used for the construction of peptides from α-hydroxy carboxylic acids and repetitive α-aminoisobutyric-acid (Aib) units (Scheme 4). Cyclization of 14a, 17a , and 20a with HCI in toluene at 100° gave the 9-, 12-, and 15-membered cyclic depsipeptides 15, 18 , and 21 , respectively.  相似文献   

9.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Thiazolidine-2-thione Reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-thiazolidine-2-thione ( 6 ) in MeCN at room temperature leads to a mixture of perhydroimidazo[4,3-b]thiazole-5-thiones 7 and N-[1-(4,5-dihydro-1,3-thiazol-2-yl)alkyl]-N′,N′-dimethylthioureas 8 (Scheme 2), whereas, in i-PrOH at ca. 60°, 8 is the only product (Scheme 4). It has been shown that, in polar solvents or under Me2NH catalysis, the primarily formed 7 isomerizes to 8 (Scheme 4). The hydrolysis of 7 and 8 leads to the same 2-thiohydantoine 9 (Scheme 3 and 5). The structure of 7a, 8c , and 9b has been established by X-ray crystallography (Chapt. 4). Reaction mechanisms for the formation and the hydrolysis of 7 and 8 are suggested.  相似文献   

10.
A new approach to the 2H-pyrano[3,2-c]pyridine system is described. 5,6-Disubstituted 3-benzoylamino-2H-pyran-2-ones 3a,b , prepared from the corresponding 1,3-dicarbonyl compounds 1a,b and methyl (Z)-2-benzoylamino-3-dimethylaminopropenoate ( 2 ), were converted into 3-benzoylamino-6-(2-dimethylamino-1-ethenyl)-5-ethoxycarbonyl-2H-pyran-2-one ( 4a ) and 5-acetyl derivative 4b . The exchange of the dimethylamino group in 4a,b with aromatic amines 5a-f,m , héteroaromatic amines 5g-i , and benzylamines 5j-l produced 5-ethoxycarbonyl-3-benzoylamino-6-(2-arylamino- or heteroarylamino-or benzylamino-1-ethenyl)-2H-pyran-2-ones 6a-l , and its 5-acetyl analog 6m . The compounds 6 were cyclized in basic media into 2H-pyrano[3,2-c]pyridine derivatives 7a-h . Analogously react also α-amino acid derivatives 8a-c and 11 as nitrogen nucleophiles producing 9a-c, 10 and 12 .  相似文献   

11.
An Unexpected Ring Enlargement of 3-(Dimethylamino)-2,2-dimethyl-2H-azirine to 4,5-Dihydropyridin-2(3H)-one Derivatives The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1a ) and 4,4-disubstituted 2-(trifluoromethyl)-1,3-oxazol-5(4H)-ones 7 in MeCN at 70° afforded 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 10 (Scheme 4), whereas no reaction could be observed between 1a and 2-allyl-4-phenyl-2-(trifluoromethyl)-1,3-oxazol-5(2H)-one ( 8a ) or 4,4-dibenzyl-2-phenyl-1,3-oxazol-5(4H)-one ( 9 ). The formation of 10 is rationalized by a mechanism via nucleophilic attack of 1a onto 7 . The failure of a reaction with 9 shows that only activated 1,3-oxazol-5(4H)-ones bearing electron-withdrawing substituents do react as electrophiles with 1a . The amino-azirine 1a and 2,4-disubstituted 1,3-oxazol-5(4H)-ones 2b – e in refluxing MeCN undergo a novel ring enlargement to 4,5-dihydropyridin-2(3H)-ones 11 (Scheme 5). Several side products were observed in these reactions. Two different reaction mechanisms for the formation of 11 are proposed: either 1a undergoes a nucleophilic addition onto the open-chain ketene tautomer of 2 (Scheme 6), or 2 reacts as CH-acidic compound (Scheme 7).  相似文献   

12.
1,3-Dipolar Cycloadditions of a Carhonyl-ylide with 1,3-Thiazole-5(4H)-thiones and Thioketones Inp-xylene at 150°, 3-phenyloxirane-2,2-dicarbonitrile ( 4b ) and 2-phenyl-3-thia-1-azaspiro[4.4]non-1-ene-4-thione ( 1a ) gave the three 1:1 adduets trans- 3a , cis- 3a , and 13a in 61, 21, and 3% yield, respectively (Scheme 3). The stereoisomers trans- 3a and cis- 3a are the products of a regioselective 1,3-dipolar cycloaddition of carbonylylide 2b , generated thermally by an electrocyclic ring opening of 4b (Scheme 6), and the C?S group of 1a . Surprisingly, 13a proved not to be a regioisomeric cycloadduct of 1a and 2b , but an isomer formed via cleavage of the O? C(3) bond of the oxirane 4b . A reaction mechanism rationalizing the formation of 13a is proposed in Scheme 6. Analogous results were obtained from the reaction of 4b and 4,4-dimethyl-2-phenyl-1,3-thiazole-5 (4H)-thione ( 1b , Scheme 3). The thermolysis of 4b in p-xylene at 130° in the presence of adamantine–thione ( 10 ) led to two isomeric 1:1 adducts 15 and 16 in a ratio of ca. 2:1, however, in low yield (Scheme 4). Most likely the products are again formed viathe two competing reaction mechanisms depicted in Scheme 6. The analogous reactions of 4b with 2,2,4,4-tetramethylcyclobutane-1,3-thione ( 11 ) and 9H-xanthene-9-thione ( 12 ) yielded a single 1:1 adduct in each case (Schemes). In the former case, spirocyclic 1,3-oxathiolane 17 , the product of the 1,3-dipolar cycloaddition with 2a corresponding to 3a , was isolated in only 11 % yield. It is remarkable that no 2:1 adduct was formed even in the presence of an excess of 4b. In contrast, 4b and 12 reacted smoothly to give 18 in 81 % yield; no cycloadduct of the carbonylylide 2a could be detected. The structures of cis- 3a , 13a , 15 , and 18 , as well as the structure of 14 , which is a derivative of trans- 3a , have been established by X-ray crystallography (Figs. 1–3, Table).  相似文献   

13.
Formation of Methyl 5,6-Dihydro-l, 3(4H)-thiazine-4-carboxyiates from 4-Allyl-l, 3-thiazol-5(4H)-ones . The reaction of N-[1-(N, N-dimethylthiocarbamoyl)-1-methyl-3-butenyl]benzamid ( 1 ) with HCl or TsOH in MeCN or toluene yields a mixture of 4-allyl-4-methyl-2-phenyl-1,3-thiazol-5(4H)-one ( 5a ) and allyl 4-methyl-2-phenyl-1,3-thiazol-2-yl sulfide ( 11 ; Scheme 3). Most probably, the corresponding 1,3-oxazol-5(4H)-thiones B are intermediates in this reaction. With HCl in MeOH, 1 is transformed into methyl 5,6-dihydro-4,6-dimethyl-2-phenyl-1,3(4H)-thiazine-4-carboxylate ( 12a ). The same product 12a is formed on treatment of the 1,3-thiazol-5(4H)-one 5a with HCl in MeOH (Scheme 4). It is shown that the latter reaction type is common for 4-allyl-substituted 1,3-thiazol-5(4H)-ones.  相似文献   

14.
The synthesis of 1- and 2-aryl-substituted (aryl = Ph, 4-NO2? C6H4, and 4-MeO? C6H4) 4, 6, 8-trimethylazulenes ( 4 and 3 , respectively) in moderate yields by direct arylation of 4, 6, 8-trimethylazulene ( 8 ) with the corresponding arylhydrazines 13 in the presence of CuIIions in pyridine (see Scheme 4) as well as with 4-MeO? C6H4Pb(OAc)3 ( 16 ) in CF3COOH (see Scheme 5) is described. With 13 , also small amounts of 1, 2- and 1, 3-diarylated azulenes (see 14 and 15 , respectively, in Scheme 4) are formed. The 4-methoxyphenylation of 8 with 16 yielded also the 1, 1′-biazulene 17 in minor amounts (see Scheme 5). 4, 6, 8-Trimethyl-2-phenylazulene ( 3a ) was also obtained as the sole product in moderate yields by the reaction of sodium phenylclopentadienide ( 1a ) with 2, 4, 6-trimethylpyrylium tetrafluoroborate ( 2 ) in THF (Scheme 1). The attempted phenylation of 8 as well as of azulene ( 9 ) itself with N-nitroso-N-phenylacetamide ( 10 ) led only to the formation of the corresponding 1-(phenylazo)-substituted azulenes 12 and 11 , respectively (Scheme 3).  相似文献   

15.
Ring Enlargement of Six- to Nine-Membered Heterocycles: Reaction of 3-(Dimethylamino)-2,2-dimethyl-2H-azirine with 3,4-Dihydro-2H-1,2,4-benzothiadiazin-3-one 1,1-Dioxides Reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and N-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazin-3-one 1,1-dioxides ( 4 ) in CHCl3 yields 3-(dimethylamino)-4,5,6,7-tetrahydro-1,2,5,7-benzothiatriazonin-6-one 1,1-dioxides 5 , a novel nine-membered heterocyclic system, by ring enlargement (Schemes 2 and 4). In refluxing MeOH, the heterocycle 5a rearranges to give the N-[1-methyl-1-(1,1-dioxo-4H-1,2,4-benzothiadiazin-3-yl)ethyl]-N′, N′-dimethylurea 10 . The three isomeric 2-(methylamino)benzenesufonamides 8,9 , and 11 (Scheme 3) are obtained by naBH4 reduction of 5a and 10 , respectively. Mechanisms for the thermal isomerization 5a → 10 and the NaBH4 reduction of 5a are proposed in Schemes 5 and 6.  相似文献   

16.
A New Aminoazirine Reaction. Formation of 3,6-Dihydropyrazin-2(1H)-ones The reaction of 3-(dimethylamino)-2H-azirines 1 and 2-(trifluoromethyl)-1,3-oxazol-5(2H)-ones 5 in MeCN or THF at 50–80° leads to 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 6 (Scheme 3). Reaction mechanisms for the formation of 6 are discussed: either the oxazolones 5 react as CH-acidic heterocycles with 1 (Scheme 4), or the azirines 1 undergo a nucleophilic attack onto the carbonyl group of 5 (Scheme 6). The reaction via intermediate formation of N-(trifluoroacetyl)dipeptide amide 8 (Scheme 5) is excluded.  相似文献   

17.
Several new pyridine derivatives were prepared via reaction of enaminoketones 1a , 1b , 1c , 1d with active hydrogen reagents. Reaction of the enaminoketones 1a , 1b , 1c with 4‐acetyl‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one 2a yielded the pyridines 3a , 3b , 3c . Condensation of the enaminonitrile 1d with compounds 2b , 2c , 2d and compound 8 gave the pyridine derivatives 6a , 6b , 6c and 10 respectively. Also, (3‐(dimethylamino)acryloyl)‐2H‐chromen‐2‐one 1a reacted with active methylenes in diethyl 3‐oxopentanedioate 12 and 4‐methyl‐6‐oxo‐2‐thioxo‐1,2,5,6‐tetrahydropyridine‐3‐carbonitrile 15 to afford the pyridine derivatives 14 and 16 respectively.  相似文献   

18.
Several amide oximes underwent condensation reactions with dimethyl acetylene dicarboxylate to afford 1:1 adducts. Under basic conditions, these adducts underwent ring closure to afford several methyl [3-(substituted)-4,5-dihydro-5-oxo-6H-1,2,4-oxadiazin-6-ylidene]acetates. The reactions of these compounds with a variety of amines resulted in addition-rearrangement reactions with the formation of the corresponding methyl 2-substituted-5-substituted amino-1,6-dihydro-6-oxo-4-pyrimidine carboxylates.  相似文献   

19.
The substituted 2,2-dialkyl-2,3-dihydro-4H-pyran-4-ones of type II and III have been prepared by acid-catalyzed cyclization of the corresponding substituted acetylenic ketones I in good to excellent yields (Scheme 1). These 2,2-dialkyl-2,3-dihydro-4H-pyran-4-ones II and III have been used for the in situ preparation of highly reactive dienes of type IV – VI (Scheme 2) in carbonyl-alkyne exchange reactions with electron-poor alkynes VII to yield the highly substituted aromatic compounds VIII and IX. These reactions proceed in good yields and with excellent degree of regioselectivity. Aryl-substituted 2,2-dialkyl-2,3-dihydro-4H-pyran-4-ones III (R1 = Ar) subsequently yield highly substituted biaryls. Reaction mechanisms are presented for the formation of the 2,2-dialkyl-2,3-dihydro-4H-pyran-4-ones as well as for the carbonyl-alkyne exchange reactions with electron-poor acetylenes.  相似文献   

20.
The compound 3-{[4-(4-[18F]fluorophenyl)methyl]piperazin-1-yl}-methyl-1H-pyrrolo[2,3-b]pyridine ([18F]3), which is an analogue of L-745,870 binding D4 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号