首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Comets exhibit high (up to 25 %) amount of optical polarization when they are observed through ground based or space telescopes. These polarizations are caused due to the scattering of cometary dust. The observed linear polarisation of comets is generally a function of the wavelength of incident light (λ), the scattering angle (θ), the geometrical shape and size of the particle and the composition of dust particles in terms of the complex values of the refractive index. The scattering properties of cometary dust will help to know the nature of cometary dust. In the present work, the observed linear polarization data of Comet NEAT are studied through simulations using Ballistic Particle-Cluster Aggregate (BPCA) and Ballistic Cluster-Cluster Aggregate (BCCA). Using Superposition T-matrix code, the best-fitting values of complex refractive indices are calculated which can well fit the observed polarization data of Comet NEAT C/2001 Q4. The best fitting values of complex refractive indices coming out from the present analysis correspond to mixture of both silicates and organics.  相似文献   

2.
The cometary coma consists of neutral gas, plasma, and dust grains. The dust grains can influence both the neutral and charged coma’s constituents. Usually, the presence of dust particles in a plasma results in additional losses of both electrons and ions due to the plasma recombination on the particle surfaces. Solar radiation makes the impact of dust even more complicated depending on the solar flux, the dust number density, the photoelectric properties of the dust particles, the dust particle composition, the distribution of the sizes, etc. We propose a simple kinetic model evaluating the role of dust particles in the coma plasma chemistry and demonstrate that this role can be crucial, resulting in a nontrivial behavior of both the electron and ion densities of the plasma. We show that a coma’s dust particles can be negatively as well as positively charged depending on their composition. These opposite charges of the grains can result in fast coagulation of dust particles, thus, forming complex aggregate shapes of cometary grains. The text was submitted by the authors in English.  相似文献   

3.
4.
Pyrogenic powders consist of fractal like aggregates with nanosized primary particles. The formation of such aggregates, their hydrodynamic behavior and their optical properties are in principle well understood. Even so, there is only little experience in interpreting results from particle sizing of such materials. Dramatic differences in size distribution obtained from different measurement techniques give frequently rise to confusion on the “true” aggregate size. However, such differences can be attributed to the different particle properties used for size measurement and to the different types of quantities, by which the frequency of the individual size fractions are weighted. For two conventional sizing techniques, Dynamic Light Scattering and Optical Centrifugation Analysis, the influence of the structural properties on the relevant optical and hydrodynamic aggregate properties is discussed on the basis of virtual aggregates as well as of empirical data for pyrogenic powders. Finally measurable size distributions are predicted in a case study.  相似文献   

5.
All-optical switches are fundamental building blocks for future, high-speed optical networks that utilize optical time division multiplexing (OTDM) techniques to achieve single channel data rates exceeding 100 Gb/s. Interferometric optical switches using semiconductor optical amplifier (SOA) non-linearities perform efficient optical switching with < 500 fJ of control energy and are approaching optical sampling bandwidths of nearly 1 THz. In this paper, we review work underway at Princeton University to characterize and demonstrate these optical switches as processing elements in practical networks and systems. Three interferometric optical switch geometries are presented and characterized. We discuss limitations on the minimum temporal width of the switching window and prospects for integrating the devices. Using these optical switches as demultiplexers, we demonstrate two 100-Gb/s testbeds for photonic packet switching. In addition to the optical networking applications, we have explored simultaneous wavelength conversion and pulse width management. We have also designed high bandwidth sampling systems using SOA-based optical switches as analog optical sampling gates capable of analyzing optical waveforms with bandwidths exceeding 100 GHz. We believe these devices represent a versatile approach to all-optical processing as a variety of applications can be performed without significantly changing the device architecture.  相似文献   

6.
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.  相似文献   

7.
We analyze both the intensity and linear polarization of cosmic dust particles by using the physically exact superposition T-matrix method in a fixed orientation for various aggregates of spheres and DDA for the aggregates of Gaussian random spheres. We study both the spherical geometry (in cometary comae) and cylindrical slabs (for regoliths) up to 2000 monomers with size parameters less than ∼3. It is straightforward to produce the observed linear polarization in both geometries while the typically convex and strong opposition spike seems to require wide regolith geometries. The dependence of various parameters on light scattering has also been studied in a rather detailed form. In applications to the cometary polarization we can fit the data in six colors from UV to the J band at a very good accuracy. We, however, emphasize that we do not claim our model to be unique. The most important parameters here are the refractive index and the size distribution of submicron particles. Rest of the parameters has only a minor role. We also found that it is critically important to use several realizations from any assumed particle geometry model because corresponding scattering characteristics can vary quite a lot.  相似文献   

8.
We investigate instability of dust drift waves in a nonuniform dusty magnetoplasma containing transverse sheared plasma flow that is produced by a nonuniform electric field. By using Boltzmann distributed electrons and ions, Poisson’s equation, as well as the dust continuity equation with perpendicular guiding center dust drift speed, we derive an eigenvalue equation, which strongly depends on the profiles of dust sheared flow and dust density gradient. The eigenvalue equation is analytically solved to obtain expressions for the growth rate and threshold of a convective instability arising from resonant interactions between the dust drift waves and sheared flows. The result may be relevant to the understanding of short wavelength (in comparison with the ion gyroradius) electrostatic fluctuations in magnetized plasmas of Saturn rings and in cometary tails. PACS numbers: 52.27.Lw; 52.35.Fp  相似文献   

9.
A direct method for extracting optical constants in the mid-infrared (IR), using small particle's spectra is presented. The method is based on the direct extraction of the optical constants from the measured spectra using the Rayleigh approach for absorbance cross section of small particles. This was achieved by using an experimental system combining a scanning mobility particle sizing system attached to a long-path IR cell, allowing simultaneous measurements of aerosol size distribution and their IR spectra.The inversion procedure was tested on crystalline ammonium sulfate aerosols, for which high resolution set of optical constants was obtained and were found to be in good agreement with recently published data. Since the extraction of the k and n spectra is deduced from the refractive index dependent complex function, the exact band features can be obtained, unlike the commonly used iterative methods that modify simultaneously both band features and scale of k and n during the calculation procedure. The suggested procedure is simple to apply; nevertheless, it is sensitive to scaling errors of the final constants resulting from uncertainties in total particle volume measurements.  相似文献   

10.
Response of a phase Doppler system to irregularly shaped particles is examined and shown to deviate qualitatively as well as quantitatively from the spherical particles. Nevertheless, the measured phase distributions based on an ensemble of particles exhibit a high degree of order and simplicity. The experimental data and the stochastic modeling of the process have shown that the phase Doppler technique can be used successfully for in-situ sizing and velocimetry of irregular particles. In the case of irregular crystalline particles, mean size and standard deviation can be deduced without requiring any assumptions regarding the functional form of the size distribution. As opposed to other optical techniques, phase Doppler can be used, in principle, near the backscattering location, so that a single optical window would be employed for transmission of laser light and collection of the scattered signals. Furthermore, size measurements can be velocity-resolved, i.e. a size distribution can be associated with each bin of the velocity histogram.  相似文献   

11.
The observed optical polarizations for comets have been explained in past assuming cometary grains to be compact spheres, such that Mie theory could be applied to simulate the observed polarizations. However, recently other shapes like spheroids and then more realistic shapes like aggregates of monomers have been considered for cometary grains, to explain the observed polarizations. For this purpose T-matrix or DDA based light scattering technique was mostly used to simulate the observed polarizations. A number of authors have used T-matrix, DDA and various other techniques along with aggregate grain model to explain the polarizations of comets like 1P/Halley, C 1995/O1 Hale-Bopp, C/1990 K1 (Levy) and C/1996 B2 Hyakutake, etc. Recent STARDUST mission had suggested cometary grains to be mixtures of compact and porous aggregates. Accordingly, attempts have been made recently to reproduce the cometary polarization with mixtures of various compositions, shapes and porosity.The work presented here considers a model for cometary grains which contains (1) solid grains of pyroxene (silicate) and organic with various sizes of spheres, prolates and oblates and (2) aggregates with monomers of various sizes, with composition of pyroxene (silicate) and organic, having structures (shapes) defined by BCCA and BAM2 codes. It was found that the present model can explain the observed polarization data, especially the negative branch, for comet 1P/Halley at , more effectively as compared to other work done in past. Among the aggregates the BAM2 structure was found to play a key role, in deciding the cross-over angle and depth of negative polarization branch.  相似文献   

12.
The electronic and optical properties of tantalum carbide TaC have been calculated using the full-potential linearized augmented-plane-wave method within the local density approximation scheme for the exchange-correlation potential. We find that the optical spectra can be extremely sensitive to the Brillouin zone sampling. The influence of relativistic effects on the dielectric function is investigated. It is shown that the scalar-relativistic correction is much more important than spin-orbit coupling. Our results are found to be in good agreement with the available experimental data. The determinant role of a band structure computation with respect to the analysis of optical properties is discussed.  相似文献   

13.
When there is a need to accurately characterize optical waveforms and, it is not surprising that some of the best, albeit only recently established, techniques to do this rely on all‐optical phenomena. Some basic reasons why all‐optical sampling holds great promise as a very useful tool well into the foreseeable future are that there are no ringing phenomena with associated waveform distortion as in electronic sampling due to impedance mismatch, and that the time resolution can be made extremely high (⩽ 1 ps) while yet also offering high sensitivity for e.g. eye diagram (a superposition of all ‘1’ and ‘0’ in a data sequence that is widely used in telecommunications testing) and statistical analysis. In this paper, we review recent developments in optical fiber‐based sampling of optical waveforms. In particular, we describe the state‐of‐the‐art in terms of the various performance measures as well as their trade‐offs.  相似文献   

14.
In this paper, the first part of two, we present new high-spectral-resolution infrared (IR) optical constants for multi-component aqueous solutions composed of ammonium sulfate, ammonium nitrate, sulfuric acid and nitric acid over a range of compositions and temperatures representative of tropospheric conditions and atmospheric aerosols. The optical constants were determined from ATR measurements via a Kramers-Kronig transformation. To accomplish this, we adapted an existing technique for estimating the real index of refraction of aqueous sulfate and nitrate solutions at multiple visible frequencies as a function of concentration and temperature. An approximation of the low-frequency behavior of the ATR spectrum was also used to reduce the error associated with using ATR data of finite frequency range.This paper also provides a brief examination of absorption spectra for analyzed mixtures in relation to their composition and temperature and discusses possible implications. The new optical constants will be of great utility to high-spectral-resolution IR remote sensing as well as radiative balance analysis in climate studies because they will enable researchers for the first time to model the impacts of tropospheric aqueous sulfate-nitrate-ammonium multi-component aerosols, including their mixtures with other important species such as dust or soot.  相似文献   

15.
The optical sampling technique is a novel method to perform time-resolved measurements of optical data signals at high bit rates with a bandwidth that cannot be reached by conventional photodetectors and oscilloscopes. The chapter reviews the techniques that are used in optical sampling systems to perform the ultrafast sampling of the signal under investigation. In addition to the various nonlinear materials and effects used for the optical sampling gates and pulse sources, the realized optical sampling systems also differ in the way, in which the system is synchronized to the data signal. Systems have been reported using synchronous, random and software synchronized configurations. Applications of optical sampling systems include high bit rate waveform and eye diagram measurements, measurements of constellation diagrams of phase modulated data signals, time-resolved measurements of the state-of-polarization as well as investigations of fiber transmission impairments.  相似文献   

16.
We show that a simple, general, and easily reproducible method for generating non-uniform sampling (NUS) schedules preserves the benefits of random sampling, including inherently reduced sampling artifacts, while removing the pitfalls associated with choosing an arbitrary seed. Sampling schedules are generated from a discrete cumulative distribution function (CDF) that closely fits the continuous CDF of the desired probability density function. We compare random and deterministic sampling using a Gaussian probability density function applied to 2D HSQC spectra. Data are processed using the previously published method of Spectroscopy by Integration of Frequency and Time domain data (SIFT). NUS spectra from deterministic sampling schedules were found to be at least as good as those from random schedules at the SIFT critical sampling density, and significantly better at half that sampling density. The method can be applied to any probability density function and generalized to greater than two dimensions.  相似文献   

17.
Conventional phase Doppler systems are useful for sizing particles in the order of microns, but sensitive to the Gaussian beam defect which can cause sizing errors. The defect can be significant when a large size is measured. In this paper, we present a new phase Doppler system using a planar optical layout which permits large particles to be measured in a forward scattering scheme without the Gaussian beam errors. The optical system design is discussed by numerical simulation based on the Mie theory.  相似文献   

18.
The optical performance of a Polarization-Maintaining Sagnac switch can be optimized in a simple way by combining the measurement of the energy transfer function with proper modeling and numerical computations. We demonstrate the sampling capabilities with the help of the existing relationship between the expected power transfer function and the experimental data. The effects of coupled Group-Velocity-Dispersion and Self-Phase-Modulation are taken into account, in combination with the limitations in the Polarization-Extinction-Ratio of the loop. Given the rapid decrease of the peak power of the pump pulse along the active section of fiber, the sizing criteria involve the use of high pump powers and lengths of fiber which are shorter than 20 m. The demonstration is implemented with the help of a basic setup which involves two closed wavelengths, i.e. 1062 and 1053 nm for the pump and the signal. This gives the benefit of fast transition times and good polarization maintaining. Efficient optical all-sampling can thus be performed within a wide dynamic range in excess of 30 dB and with a sampling resolution in the range of 2 ps.  相似文献   

19.
The optical absorption spectra of atmospheric dust as determined by transmission and diffuse reflectance spectroscopic methods is discussed in the 0.4 to 40 um wavelength range. Quantitative measurements are presented which show the imaginary refractive index to be about 0.007i, with little wavelength dependence, in the 0.4 to 1.3 μm spectral interval. The absorption coefficients of individual materials found in atmospheric dust are also given. This work suggests that atmospheric dust may be composed mainly of weakly absorbing particles contaminated with small amounts of very strongly absorbing materials such as free carbon. The implications of this are discussed from the point of view of laser beam attenuation and lidar return signals. Mie theory computations for ruby lidar wavelengths are shown which suggest that for some models of atmospheric dust, the concept of an average imaginary refractive index may be misleading. Thus, it may be necessary to consider the individual complex refractive indices and size distributions of more than one constituent material present in the dust. This implies that anthropogenic contributions to the atmospheric aerosol, such as free carbon and other strong absorbers, may be of greater optical significance than their relative concentrations might indicate.  相似文献   

20.
物质的太赫兹光谱包含着非常丰富的物理和化学信息。它对化合物晶体具有高的灵敏度、 单光子能量低等特点。但受到检测人员知识背景、 背景噪声、 识别算法精度等因素的影响,光谱样本识别准确率和效率较低。为了提高对太赫兹光谱的检测能力,提出应用基于凸组合核函数的support vector machines(SVM)对化合物的THz脉冲透射谱进行分类。在使用小波变换对数据进行滤波预处理之后,提取了传统波峰、 波谷位置特征和term frequency-inverse document frequency (TF-IDF) 最大间隔特征。TF-IDF方法使用信息论的原理确定每个采样点的权重,选择权重较大的点作为特征。针对太赫兹透射谱特征相似、 维数较低带来的分类困难问题,构建基于凸组合核函数的SVM分类模型。并利用核评价的方法,通过高维非线性规划方程求解最优凸组合参数。当最优凸组合参数被确定时,构建分类模型进行分类和预测。相比较于单一核函数,凸组合核函数将透射谱特征与分类模型融合起来。对于不同的检测样本,数据经过凸组合核函数映射到高维空间后,特征具有更显著的区分度。使用不同的太赫兹透射谱样本进行分类实验,结果表明,分类准确率得到极大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号