首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The effects of polymer concentration, temperature, and surfactant on the rheological properties of poly(N-isopropylacrylamide), poly NIPAM, were studied. Below 28°C the viscosity decreased with increasing temperature according to the Arrhenius expression. However, at 29°C the viscosity increased to a maximum value at 32°C, the lower critical solution temperature (LCST) for aqueous polyNIPAM. Higher temperatures gave a much lower viscosity. This unusual rheological behavior was explained by the phase behavior of the polymer. Sodium dodecyl sulfate (SDS) binding to polyNIPAM increased the cloud point temperature (CPT) and attenuated the unusual rheological behavior of polyNIPAM in water. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The effect of temperature on the flocculation of dilute polystyrene latex in the presence of poly(N-vinylcaprolactam) (PVC), a thermosensitive polymer interacting with water to form systems characterized by a lower critical mixing temperature, is studied by the nephelometry. It is shown that PVC induces latex flocculation only in the presence of a small amount of an inorganic electrolyte. Dependence of the initial flocculation rate on PVC concentration has an extremal pattern, which is typical of polymer flocculants. At concentrations close to those of optimal flocculation, heating in the range below the phase separation temperature (T ps) increases the flocculation rate and the sizes of forming aggregates. It is found that, at PVC concentrations that do not induce the flocculation at room temperature, heating in the range above T ps (in the presence of a sensitizing electrolyte) results in an irreversible latex flocculation. The disclosed thermostimulated flocculation is assumed to be due to the deterioration of the solvent thermodynamic quality.  相似文献   

3.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

4.
A method is developed for anchoring enzymatically degraded cationized starch as electrosteric stabilizers onto synthetic latices, using cerium(IV) to create free‐radical grafting sites on the starch. Direct anchoring of debranched starch onto a poly(methyl methacrylate) seed latex yields a latex stabilized by well‐defined oligosaccharides. Using α‐amylase to randomly cleave starch to form (1→4)‐α‐glucans, and a comonomer, N‐isopropyl acrylamide (NIPAM), whose corresponding polymer exhibits a lower critical solution temperature (LCST), creates a means to synthesize block (or graft) oligomers of oligosaccharide and synthetic polymer, which are water soluble at room temperature. Above 30 °C, they become amphiphilic and form self‐emulsifying nanoparticles (sometimes termed “frozen micelles”) from which a synthetic latex is grown after addition of methyl methacrylate, the collapsed NIPAM‐containing entities functioning as a type of in situ seed. This synthesis of stable synthetic latex particles is shown to have a high grafting efficiency. The starch fragments were characterized by 1H solution‐state NMR before grafting, and 13C solid‐state cross‐polarization magic‐angle spinning (CP‐MAS) NMR was used to characterize the starch oligomers actually grafted on the final latex. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1836–1852, 2009  相似文献   

5.
 A series of P[N-isopropylacrylamide (NIPAM)] latexes with different contents of cyano groups were successfully prepared by either seeded or shot-growth polymerizations of an aqueous solution containing acrylonitrile (AN) onto a seed P[NIPAM] latex, respectively, and further characterized by FT-IR, 1H-NMR, elemental analysis, as well as by quasielastic light scattering (QELS) and scanning electron microscopy (SEM). All prepared surface-cyanofunctionalized P[NIPAM] latexes exhibited the same range of lower critical solution temperature (LCST) as a pure P[NIPAM] latex. The shot polymerization process proved more efficient at yielding cyano derivatized latexes than the seeded polymerization technique. The amount of incorporated cyano groups onto the particles was determined with a good correlation both by 1H-NMR and elemental analysis. The higher the amount of initially introduced AN monomer in the reaction mixture, the more cyano groups were incorporated onto the particles. The surface of the particles with high content of cyano groups appeared quite rough by SEM in comparison with that of the pure P[NIPAM] particles. Received: 25 February 1998 Accepted: 23 June 1998  相似文献   

6.
A series of N-isopropylacrylamide (NIPAM)-acrylic acid–ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (Tc). Solutions of polymers containing 10% or less of AA display a constant Tc for pH above 5.5, with 15% there is a continuous increase in Tc with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I 1/I 3 ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than Tc, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.  相似文献   

7.
The stability of a solution of charged polystyrene particles in the presence of nonadsorbing polyelectrolyte macromolecules is measured using optical light scattering. The particles were negatively charged polystyrene latex spheres (0.5–1 μm diameter) while the macromolecules were simulated using negatively charged colloidal silica spheres (5–7 nm diameter). Because of the electrostatic repulsion between the particles, the solution is found to be stable against primary flocculation (irreversible flocculation into a primary energy minima). However, because of long-range attractive depletion forces, reversible secondary flocculation of the particles occurs into a local potential energy minimum. As observed with uncharged macromolecules, the polyelectrolyte first induces flocculation at a critical flocculation concentration (v*), but later restabilizes the system at a critical restabilization concentration (v**). These critical concentrations are found to decrease with decreasing macromolecule size and increasing particle size. The restabilized solutions are found to remain suspended for periods greater than 20 days. Comparison of the measured flocculation and restabilization results to predictions made using a recently developed force-balance model show qualitative agreement.  相似文献   

8.
The colloidal stability with respect to temperature of aqueous α-Fe2O3dispersions stabilized with novel poly(vinylmethylether)-block-poly(vinyloxy-4-butyric acid) diblock copolymers was studied by rheological and turbidimetric measurements. Adsorption of the block copolymers provides the particles with a steric barrier due to the nonadsorbing poly(vinylmethylether) (PVME) blocks. Rheological measurements on concentrated (15 vol %) dispersions showed that flocculation occurred near the θ temperature of PVME in water. For the turbidimetric analysis, the fraction of small particles was used at a very low concentration. With these dispersions, flocculation was found at higher temperatures, corresponding to the lower critical solution temperature of the block copolymer used. The particles spontaneously redispersed when a heated and flocculated dispersion was cooled to below the flocculation temperature.  相似文献   

9.
Vinyl acetate/(VAc)-butyl acrylate/(BuA) copolymer latex films of various copolymer compositions were investigated for their morphological properties by electron microscopy techniques, and for their mechanical properties by dynamic mechanical spectroscopy (DMS), differential scanning calorimetry (DSC), and tensile strength measurements. Batch copolymer latex films showed domains of PBuA dispersed in PVAc matrix; the domain sizes were increased with increased BuA content. Semicontinuous latex films were homogeneous in composition. Glass transition temperatures Tg determined from DMS and DSC indicated the presence of two, low and high, transition temperatures for batch latex films. The two temperatures approached the individual homopolymers, with increased PBuA content up to 51 mol %. Semicontinuous latex films showed only one single Tg. Tensile properties of the batch copolymer films showed a higher ultimate tensile strength, higher Young's modulus, and lower percent elongation to break compared to semicontinuous latex films. These differences were found to reflect the effect of mode of monomer addition during the emulsion copolymerization process on the particle morphology, and confirmed earlier data on bulk, colloidal, and surface properties of the same copolymer latexes.  相似文献   

10.
Summary: Polymer particles decorated with metal nanoparticles were prepared by UV-irradiation of polystyrene latex particles incorporating polymethylphenylsilane (PS/PMPS) and P[S-co-NIPAM]/PMPS particles (NIPAM: N-isopropyl acrylamide) in the presence of metal salts. The metal nanoparticle/polymer hybrid particles were used as a catalyst for the reduction of 4-nitrophenol with NaBH4. The Pd- and Ag-P(S-co-NIPAM)/PMPS hybrid particles had larger metal nanoparticles and the lower catalytic activity than those of Pd- and Ag-PS/PMPS, respectively. The surface functional group of the polymer particles affected the formation of the metal nanoparticles and their catalytic activity.  相似文献   

11.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

12.
Colloidal dispersions of nanometer-sized platinum colloids were prepared by ethanol reduction of PtCl6 2− in the presence of poly(N-vinylformamide) (PNVF), poly(N-vinylacetamide) (PNVA) or poly(N-vinylisobutyramide) (PNVIBA) and analyzed by UV-vis spectroscopy and transmission electron microscopy. The dispersion stability of each colloid to the presence of added KCl was determined by a stirring and centrifugation procedure. The platinum colloid stabilized by PNVF (PNVF-Pt) was the most stable and its critical flocculation concentration was not observed up to the highest electrolyte concentration employed (4.0 M). The stability of the platinum colloids stabilized by poly(N-isopropylacrylamide) (PNIPAAm) and poly(vinylpyrrolidone) (PVP) was also examined. The sequence of polymer-stabilized platinum colloids in increasing order of dispersion stability was found to be PNIPAAm-Pt < PNVIBA-Pt < PVP-Pt < PNVA-Pt < PNVF-Pt. Received: 25 August 1998 Accepted in revised form: 14 January 1999  相似文献   

13.
N‐Isopropylacrylamide and vinyl imidazole copolymer, P(NIPAM‐co‐VI), was synthesized by free radical emulsion polymerization. Then, the copolymer and silver nanoparticle composite, P(NIPAM‐co‐VI)‐Ag, was prepared by in situ reduction of AgNO3 with NaBH4. Due to the coexistence of thermal‐responsive PNIPAM and pH‐responsive PVI, P(NIPAM‐co‐VI) and P(NIPAM‐co‐VI)‐Ag exhibited both thermal and pH responsibility, their size would change while altering the temperature or pH of the circumvent. Their thermal and pH dual responsive properties were studied by dynamic light scattering (DLS). P(NIPAM‐co‐VI)‐Ag could be stably dispersed in water at a pH range from 3.0 to 9.3, which is favorable to use P(NIPAM‐co‐VI)‐Ag as a catalyst in the reduction reaction of p‐nitrophenol. The reaction rate constant (kapp) increased with the decrease of pH or the increase of VI content in the copolymer.  相似文献   

14.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The effect of the polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (JS-2), on the stability of polybutyl acrylate latex particles during semibatch emulsion polymerization was investigated in this work. Experimental data show that the ionic strength is the most important parameter in determining the latex stability during the reaction. Both the amount of coagulum produced by intensive coagulation and percentage of the particle volume change (ΔV) caused by limited flocculation increase with increasing electrolyte concentration. The parameter Δ V increases significantly when the concentration of JS-2 in the initial reactor charge ([JS-2]i) increases. The amount of coagulum increases rapidly when the agitation speed is increased from 400 to 800 rpm. Experiments of coagulation kinetics were carried out to study the stability of latex products toward added salts. The experimental data show that the chemical stability of the latex product increases with increasing pH. Furthermore, the critical coagulation concentration and diffuse potential increase with increasing [JS-2]i. It is postulated that the increasing electrostatic attraction force between two approaching particles due to the increased [JS-2] i can increase the apparent magnitude of Hamaker constant.  相似文献   

16.
To mimic the three-dimensional (3-D) globular architecture resulting from the precise positioning of hydrophobic/hydrophilic domains (blocks) of naturally occurring proteins, water-soluble linear and star homopolymers of N,N'-dimethylacrylamide (DMA) were synthesized with prescribed molecular weights via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently used as macro chain transfer agents for block copolymerization with N-isopropylacrylamide (NIPAM). For the star block copolymers, the interior block consisted of NIPAM while the exterior block was DMA. Since polyNIPAM thermally switches from hydrophilic to hydrophobic, the 3-D solution conformations of the polymers were studied as a function of temperature using differential scanning calorimetry (DSC), static light scattering (SLS), and dynamic light scattering (DLS). The polymers were observed to form monodisperse aggregates in an aqueous pH 4 buffer solution when heated above the lower critical solution temperature (LCST) of polyNIPAM. The temperature at which the polymers aggregated and the size of the aggregates were dependent on the NIPAM block length and the core architecture. A simple model based on an optimal area per headgroup was used to analyze our experimental findings and was useful for predicting the final size and molecular weight of the aggregates formed.  相似文献   

17.
A water‐soluble comonomer, N‐isopropylacrylamide (NIPAM), and an oil‐soluble crosslinker, divinylbenzene (DVB), have been combined in a system for the synthesis of nanocapsules with crosslinked shells through interfacial miniemulsion polymerization by encapsulating a liquid nonsolvating hydrocarbon. Oligomers of poly(N‐isopropylacrylamide) (PNIPAM) were dehydrated and separated from the aqueous phase and were adsorbed by the nanodroplets or latex particles and then anchored at their interfaces by means of a crosslinking reaction. Nanocapsules were then formed through encapsulation of the hydrocarbon by the newly produced polymers at the interfaces of the droplets. The crosslinked structure gradually grew to stabilize the shell morphology. The incorporation of NIPAM into the shell copolymers has been verified by FTIR and solid‐state 13C NMR data. The fact that the number of nanocapsules increases with increasing amounts of DVB and NIPAM supports the formation of nanocapsules following interfacial (co)polymerization. Therefore, a mechanism for the formation of nanocapsules through interfacial (co)polymerization induced by NIPAM and DVB is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1522–1534, 2009  相似文献   

18.
Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð < 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be <3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4062–4070  相似文献   

19.
Monodisperse cationic thermosensitive latex microgels prepared by radical-initiated precipitation copolymerization of N-isopropylacrylamide (NIPAM), methylenebisacrylamide, and dimethylaminoethylmethacrylate (DMAEMA) have been reported (Zha LS, Hu JH, Wang CC, Fu SK, Elaissari A, Zhang Y 2002 Colloid Polym Sci 280:1) and we suggested (Zhang Y, Zha LS, Fu SK J Appl Polym Sci) that the polyelectrolyte chains are rich in their expanded shell layers. The effect of a range of electrolytes on several colloidal properties of these cationic latexes (such as particle size, zeta potential and colloidal stability) has been investigated. The ability of the anions to induce the particle deswelling and flocculation is related to their position in the Hofmeister series. Owing to the DMAEMA-rich layer on the latex particles, the ionic-strength dependence of the particle hydrodynamic size and the zeta potential become more profound with increasing amount of DMAEMA incorporated into the microgel. It is suggested that the effect of electrolytes on the colloidal properties of the copolymer microgel latexes is attributed to the dehydration of the poly(NIPAM) segment and the screening of the electrostatic interaction between the charged DMAEMA units induced by electrolytes.  相似文献   

20.
The stability of PTFE latex prepared in the absence of emulsifier by radiation-induced polymerization was investigated by electrophoresis and conductometric titration. The storage stability depends on total dose rather than dose rate, and the stable latex can be obtained in the region log D > 0.026 V1 ? 0.6, where D is the total dose (104 rad) and V1 is a polymer concentration in latex (g/liter). The stability increases only during polymerization in the presence of enough TFE monomer. The ζ potential of the latex particles lies in the region from ?25 to ?50 mV in an as-polymerized state (near pH 3) and from ?50 to ?65 mV at pH 10. The number of carboxyl end groups and surface charge density were examined by conductometric titration with NaOH and calculation from the G values of radiolysis of water. All the surface charge densities measured by conductometric titration are larger than those calculated from the G values. These results suggest that some acids have been formed on the surface of the particles. The acids may be the carboxyl end groups of polymer chains or hydrofluoric acid (HF) adsorbed on the surface. PTFE particles prepared in this polymerization system are stabilized mainly due to the carboxyl end groups and adsorptions of OH? and HF on the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号