首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Francesca Serra 《Liquid crystals》2016,43(13-15):1920-1936
ABSTRACT

The use of nematic liquid crystals for directed assembly of particles and for the creation of multistable systems depends on the ability to control the topological defects and the distortions of the director field. These are not only driven by topological constraints and by anchoring energies but also by the curvature field created by the bounding surfaces. This review explores the interaction between defects, topology, inclusions and curvature in nematics. I will introduce the relationship between curvature and the Frank elastic energy in nematics, and then I will give an overview of specific examples that show how this coupling can create unexpected behaviours, such as lock-and-key interactions, anchoring transitions on curved surfaces and memory effects.  相似文献   

3.
4.
酶的固定化及其应用   总被引:2,自引:1,他引:2  
李晔 《分子催化》2008,22(1):86-96
酶的固定化研究始于1960年代中期,从1970年代初开始酶的固定化技术研究发展很快,至1980年代初,每年约发表1000篇以上的文献和近200篇专利,所报道的固定化方法达100种以上[1].1980年代中以后,酶和细胞固定化研究的发展速度开始减慢,从而有人认为,对酶的固定化技术应予以重新评价  相似文献   

5.
Elastic bending constants of mixed amphiphilic bilayers are calculated using a molecular approach. The free energy is expanded up to quadratic order in curvatures and compositions, choosing a flat symmetrical bilayer as the reference state. Bending constants are then calculated from the derivatives of the free energy evaluated at this reference state. Two-component bilayers are considered. As a novelty, the local compositions are allowed to fully relax upon bending so that the 2 monolayers are at chemical equilibrium with each other at every curvature. The compositional degree of freedom is shown to affect the bending constant k, but not the saddle-splay constant k. The influence on the membrane elastic properties of various chain structural features, such as length, volume, and stiffness, is investigated. This may prove useful to model mixed bilayers composed of hydrocarbon/hydrocarbon and hydrocarbon/fluorocarbon chains.  相似文献   

6.
模拟酶的研究与发展   总被引:3,自引:0,他引:3  
刘有芹  颜芸  沈含熙 《化学进展》2005,17(6):0-1073
本文详细评述了卟啉、主体试剂、印迹高分子、膜体系及配合物等作为模拟酶的研究和发展。阐明了开展模拟酶的研究对于了解酶的作用机理、发展新型生物活性分子分析方法、探讨生物体系的生命现象的重要意义。对模拟酶研究的未来作了展望。  相似文献   

7.
人工模拟酶的研究与应用进展   总被引:1,自引:0,他引:1  
人工模拟酶具有性质稳定、易于制备、环境耐受性强等优点,在某种程度上解决了天然酶易失活、难制备的缺点。本文按照人工模拟酶的分类,综述对比了传统模拟酶与纳米材料模拟酶的研究现状,对人工模拟酶优缺点进行总结分析,并对其应用前景进行了展望。  相似文献   

8.
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.  相似文献   

9.
固定化酶的制备及应用   总被引:24,自引:0,他引:24  
酶的固定化及其酶促反应是最具发展前景的生物技术前沿领域之一。固定化酶已经广泛应用于生物化学、生物技术与工程、生物医学工程、化学化工等方面,将在人类社会可持续发展中发挥重要作用。本文综述了近期固定化酶制备及应用研究的进展。  相似文献   

10.
11.
The enzyme Β-galactosidase was coimmobilized with the yeastSaccharomyces cerevisiae in alginate. The coimmobilized system was used to produce ethanol from cheese whey permeate.  相似文献   

12.
On the way to a combinatorial biotechnology? The directed evolution of enzymes promises a rapid access to effective biocatalysts. New molecular biology techniques for random mutagenesis in combination with high-throughput screening might revolutionize the creation of enzymes with new and improved properties.  相似文献   

13.
In this work, we used lattice Monte Carlo simulations and theoretical model calculations to show how the self-assembly of adsorbed amphiphilic molecules is affected by the local curvature of solid surfaces. It is found that, beyond a critical curvature value, solid surface geometry governs the spatial ordering of aggregates and may induce the morphological transitions. The simulation results show how the curvature of solid surfaces modulates the distribution of aggregates: the anisotropy in local curvature along and perpendicular to the cylindrical surfaces tends to generate orientationally ordered cylindrical micelles. To account for the morphological transitions induced by the local curvature of solid surfaces, we constructed a theoretical model which includes the Helfrich bending energy, the deformation energy of aggregates induced by solid surfaces, and the adsorption energy. The model calculations indicate that on highly curved solid surfaces the bending energy for bilayer structure sharply increases with surface curvature, which in turn induces the morphological transition from bilayer to cylindrical structure. Our results suggest that the local curvature provides a means of controlling the spatial organization of amphiphilic molecules.  相似文献   

14.
Structure and Action Mechanism of Ligninolytic Enzymes   总被引:2,自引:0,他引:2  
Lignin is the most abundant renewable source of aromatic polymer in nature, and its decomposition is indispensable for carbon recycling. It is chemically recalcitrant to breakdown by most organisms because of the complex, heterogeneous structure. The white-rot fungi produce an array of extracellular oxidative enzymes that synergistically and efficiently degrade lignin. The major groups of ligninolytic enzymes include lignin peroxidases, manganese peroxidases, versatile peroxidases, and laccases. The peroxidases are heme-containing enzymes with catalytic cycles that involve the activation by H2O2 and substrate reduction of compound I and compound II intermediates. Lignin peroxidases have the unique ability to catalyze oxidative cleavage of C–C bonds and ether (C–O–C) bonds in non-phenolic aromatic substrates of high redox potential. Manganese peroxidases oxidize Mn(II) to Mn(III), which facilitates the degradation of phenolic compounds or, in turn, oxidizes a second mediator for the breakdown of non-phenolic compounds. Versatile peroxidases are hybrids of lignin peroxidase and manganese peroxidase with a bifunctional characteristic. Laccases are multi-copper-containing proteins that catalyze the oxidation of phenolic substrates with concomitant reduction of molecular oxygen to water. This review covers the chemical nature of lignin substrates and focuses on the biochemical properties, molecular structures, reaction mechanisms, and related structures/functions of these enzymes. Reference to a company and/or products is only for purposes of information and does not imply approval of recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the US Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

15.
A detailed presentation was given of the discovered and studied enzymes involved in degradation of cellulose and lignin by the white-rot fungus,Sporotrichum pulverulentum (Phanerochaete chrysosporium). The fungus utilizes, for the degradation of cellulose: (a) Five different endo-1,4-Β-glucanases (b) One exo-1,4-Β-glucanase (acting synergistically with the endoglucanases) (c) Two 1,4-Β-glucosidases The regulation, induction, and catabolite repression of the endoglucanases have been studied in depth and the results of these studies were also presented. In addition to the hydrolytic enzymes,S. pulverulentum also produces the oxidative enzyme cellobiose oxidase that is of importance for cellulose degradation. Another unconventional enzyme is cellobiose: quinone oxidoreductase, which is of importance for both cellulose and lignin degradation. It reduces quinones from the lignin under oxidation of cellobiose from the cellulose. It has recently been discovered thatS. pulverulentum produces two acidic proteases of importance for cellulose degradation since they enhance the endoglucanase activity, particularly in young cultures of the fungus grown on cellulose. The enzymes involved in lignin degradation are not known nearly as well as these involved in cellulose degradation. However, extracellular phenol oxidases, laccase, and peroxidase have been shown to be involved in and necessary for lignin degradation to take place. A phenol oxidase-less mutant ofS. pulverulentum cannot degrade lignin unless a phenol oxidase is added to the medium. Recently, an enzyme splitting the α—Β bond in the propane side chain has been discovered by Kirk and coworkers. Several enzymes involved in the metabolism of vanillic acid, always a metabolite in lignin degradation, have been discovered and studied in our laboratory. Presentations of the enzymes for decarboxylation, demethoxylation, methanol oxidation, ring cleavage, and intracellular quinone reduction by NAD(P)H: quinone oxidoreductase were given. A discussion of possibilities for a specific enzymic primary attack on the native lignin, as well as of the likeliness for an unspecific radical nature of this attack, was also given.  相似文献   

16.
Natural enzymes have arisen over millions of years by the gradual process of Darwinian evolution. The fundamental steps of evolution-mutation, selection, and amplification-can also be exploited in the laboratory to create and characterize protein catalysts on a human timescale. In vivo genetic selection strategies enable the exhaustive analysis of protein libraries with 10(10) different members, and even larger ensembles can be studied with in vitro methods. Evolutionary approaches can consequently yield statistically meaningful insight into the complex and often subtle interactions that influence protein folding, structure, and catalytic mechanism. Such methods are also being used increasingly as an adjunct to design, thus providing access to novel proteins with tailored catalytic activities and selectivities.  相似文献   

17.
This review covers advances/developments in the use of enzymes in synthetic mono-/oligo-saccharide chemistry published in the literature between January 2001 and June 2003. Particular attention is paid to the use of aldolases, ketolases, glycosidases, glycosynthases, lipases, esterases and coupled multi-enzyme biotransformations and 132 references are cited.  相似文献   

18.
Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.  相似文献   

19.
Most intracellular enzymes are made up of several identical or different subunits. The more remote any two organisms are phylogenetically, the greater will be the differences in amino acid sequence of a given enzyme. Nevertheless, numerous examples exist of specific association between chemically different subunits, or even of the formation of enzyme chimeras. They span not only the boundaries between related organisms but also the deep rift between prokaryotic and eukaryotic cells. Exchange of subunits between enzymes of similar activity but differing origin can be rationalized by assuming enzymes to posses functionally defined types of three-dimensional structures.  相似文献   

20.
We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study, we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than that from our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane such that forces along the trajectory are on average smaller than they would be for random particle positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号