首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several new phosphorylated or nonphosphorylated maleimide or nadimide systems containing s-triazine rings were synthesized. Their synthesis was accomplished by simple methods utilizing readily available and relatively inexpensive starting materials. All polymer precursors were characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. They were thermally polymerized to heat-resistant laminating resins. Thermal characterization of monomers and their cured resins was achieved using differential thermal analysis (DTA), dynamic thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). The cured resins were stable up to 304–330°C both in nitrogen and air atmospheres and formed anaerobic char yield 49–59% at 800°C. The phosphorylated polymers showed a lower temperature of initial weight loss but afforded higher anaerobic char yield than did the corresponding nonphosphorylated polymers. The thermal properties of the polymers were correlated with their chemical structure.  相似文献   

2.
Novel phosphorylated bismaleimides and nonphosphorylated tetramaleimides containing substituted s-triazine rings (chain-extended by imide, amide, or urea groups) were prepared and polymerized. These polymer precursors were prepared by reacting 2,4-bis(4-aminophenoxy)-6-diethoxyphosphinyl-s-triazine or 2,4,6-tris(4-aminophenoxy)-s-triazine with maleic anhydride in combination with a bridging agent such as pyromellitic or benzophenone tetracarboxylic dianhydride, terephthaloyl chloride, and tolylene diisocyanate. The structure of polymer precursors was confirmed by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy and their curing behavior was investigated by differential thermal analysis (DTA). The phosphorylated bismaleimides were thermally polymerized at a lower temperature than did the corresponding nonphosphorylated tetramaleimides. Dynamic thermogravimetric analysis (TGA) showed that the nonphosphorylated and phosphorylated cured resins were stable up to 320–370 and 312–327°C, respectively, in nitrogen or air atmosphere. In addition, the latter afforded a relatively higher char yield. The relative thermal and thermooxidative stability of polymers with regard to the chemical structure of the bridging group was of the order imide > amide > urea. Upon isothermal aging the phosphorylated polymers exhibited a lower weight loss than did the corresponding nonphosphorylated polymers.  相似文献   

3.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

4.
The article deals with synthesis, characterization, and polymerization of 5-norbornene-2,3-dicarboximide end-capped resins (bisnadimides) based on 4,4′-diaminodiphenylether, 1,4/1,3-bis(4′-aminophenoxy) benzene, 2,2′-bis[4-(4′-aminophenoxy)phenyl]propane, and bis[4-(4′-aminophenoxy)phenyl]sulphone. Both exo and endo bisnadimides were prepared by reacting the aromatic diamines with exo or endo nadic anhydride in glacial acetic acid at 120°C. The exo or endo bisnadimides could be distinguished on the basis of differences observed in IR or 1H-NMR spectra. Both thermal (in solid state) and metathetical polymerization (using WCl6/tetramethyltin catalyst and chlorobenzene solvent) of bisnadimides was carried out. Only exo bisnadimides could be polymerized using metathesis reaction whereas thermal polymerization of both endo and exo bisnadimide could be successfully carried out at 300°C in static air atmosphere. The polymers were highly crosslinked and insoluble in common organic solvents. The polymers obtained by metathesis polymerization were light brown in color whereas those obtained by thermal polymerization were dark brown in color. Thermal stability of the thermally polymerized exo or endo bisnadimides was comparable. These polymers were stable up to 400°C and decomposed in a single step above this temperature. The char yield at 800°C depended on the structure of the polymer and was in the 39–56% range. The polymers formed by metathesis polymerization showed a 1–3% weight loss in the temperature range 226–371°C and decomposed in a single step above 440°C. The char yields were higher in these polymers (53–71%) compared to those obtained by thermal polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2323–2331, 1997  相似文献   

5.
Heat-resistant polymers were obtained by thermal polymerization of several bismaleimides or their substituted derivatives. The chain of the polymer precursors was extended by incorporation of imidized benzophenone tetracarboxylic dianhydride between the maleimide rings in order to impart a degree of flexibility in the polymers. The bismaleimides and their corresponding tetraamic acids were characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The differential thermal analysis (DTA) thermograms of the monomers showed exotherms at 200–340°C attributed to the thermally induced polymerization reactions. The influence of different substituents in the maleic double bond on the curing temperature was investigated. The thermal stability of the cured resins was evaluated by thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). They were stable up to 367–433°C both in nitrogen and air atmosphere and afforded 57–68% char yield at 800°C under anaerobic conditions. The structure of the aromatic and aliphatic diamines utilized for imidization was correlated with the thermal stability of the cured resins. The bismaleimide derived from p-phenylenediamine gave the most heat-resistant resin because of its higher rigidity.  相似文献   

6.
In recent years, there have been concerted efforts to replace petrochemical products with those from renewable sources due to the unsustainability of petroleum feedstock, and the continued volatility in the price. This work describes the synthesis and thermal properties of two new lignin-derived poly(ether-amide)s as alternative thermoplastics to petroleum-based commodities. Poly-4-(2-aminoethoxy)benzoate (PEAB) and poly-4-(2-aminoethoxy)-3-methoxybenzoate (PEAV) are synthesized by a melt polycondensation and characterized by 1H NMR spectroscopy and thermal analysis. The number average molecular weight (Mn) of the polymers are estimated from the 1H NMR spectroscopy analysis, and were shown to be 4100 and 12,000 g/mol for PEAB and PEAV respectively. The PEAB had a higher decomposition temperature (Td) as well as glass transition temperature (Tg) compared to PEAV; albeit, with a lower molecular weight. The polymers’ Td were in the range of 330 °C–380 °C and the Tg were between 100 °C and 120 °C. The thermal properties of the polymers are in the desirable range for thermoplastic materials used in the packaging, storage, and coating industries. Furthermore, the polymers are susceptible to degradation under acidic conditions in a short period; a property that is highly desirable for degradable polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2154–2160  相似文献   

7.
Abstract

Several poly(aryl ether)s have been prepared by the condensation of 1,3‐bis(4‐hydroxy phenyl) benzene with different trifluoromethyl activated bis‐fluoro compounds. IR, 1H and 13C NMR, and elemental analyses have established the resulting polymer structures. The properties of the polymers have been evaluated by DSC, TGA, dynamic mechanical analysis (DMA) and stress–strain analysis. The polymers 1a and 1c showed semi‐crystalline behavior as evident by sharp crystalline melting peaks at 299°C and 330°C along with glass transitions at 202°C and 216°C, respectively. The polymers showed very good thermal stability in air, high modulus, and high tensile strength with low elongation at break.  相似文献   

8.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

9.
Polybenzimidazole (PBI) polymers tethered with N‐phenyl 1,2,4‐triazole (NPT) groups were prepared from a newly synthesized aromatic diacid, 3′‐(4‐phenyl‐4H‐1,2,4‐triazole‐3,5‐diyl) dibenzoic acid (PTDBA). The obtained polymers show superior thermal and chemical stability and good solubility in many aprotic solvents. The inherent viscosities of all polymers were around 1 dL/g. They exhibit high thermal stability with initial decomposition temperature ranging from 515 to 530 °C, high glass transition temperature ranging from 375 to 410 °C, and good mechanical properties with tensile stress in the range of 66–98 MPa and modulus 1897–2600 MPa. XRD analysis indicates that these polymers are amorphous in nature. Physicochemical properties such as water and phosphoric acid‐uptake, oxidative stability, and proton conductivity of membranes of these polymers have also been determined. The proton conductivity ranged from 4.7 × 10?3 to 1.8 × 10?2 S cm?1 at 175 °C in dry conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2289–2303, 2009  相似文献   

10.
A series of inorganic-organic linear diacetylenic hybrid polymers ( 5a–e ) were prepared by the polycondensation reaction of 1,4-dilithiobutadiyne with 1,4-bis(dimethylchlorosilyl)benzene and/or 1,7-bis(tetramethylchlorodisiloxane)-m-carborane. Their structures were characterized using FTIR, and 13C and 1H NMR spectroscopies, and their thermal and oxidative properties were evaluated by DSC and TGA analyses. The hybrid polymers exhibited solubility in common organic solvents and were viscous liquids or low melting solids at room temperature. Broad prominent exotherms, attributed to reaction of the diacetylenic units, were observed by DSC in the 306°C to 354°C temperature range. When 5a–e were analyzed by TGA to 1000°C under nitrogen, weight retention between 79 and 86% were obtained. Ageing studies, performed at elevated temperatures in air on a thermoset and a ceramic obtained from polymer 5b , showed this system to have excellent thermal and oxidative stability. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2387–2391, 1997  相似文献   

11.
The new polymer-forming diimide-diacid, 2,3-bis(4-trimellitimidophenoxy) naphthalene (I), was readily obtained by the condensation reaction of 2,3-bis (4-aminophenoxy) naphthalene with trimellitic anhydride. A series of novel aromatic poly (amide-imide)s were prepared by the direct polycondensation of diimide-diacid I with various aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. The resultant polymers have inherent viscosities in the range of 0.65–1.02 dL/g at 30°C in N, N-dimethylacetamide. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed tensile strength at break up to 86 MPa, elongation to break of 5–9%, and initial moduli up to 2.35 GPa. The wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or p-oxyphenylene group are partially crystalline, and the other polymers are evidenced as amorphous patterns. These polymers show a glass transition in the range of 213–290°C in their differential scanning calorimetry (DSC) traces. The thermal stability of the polymers was evaluated by thermogravimetry analysis, which showed the 10% weight-loss temperatures in the range of 508–565°C in nitrogen and 480–529°C in air atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Two novel series of soluble alternating conjugated copolymers comprising 10‐alkylphenothiazine and bithiophene or 3‐pentylthieno[3,2‐b]thiophene moieties were synthesized using palladium‐catalyzed Suzuki coupling reaction. The structures of the polymers and their thermal, photophysical, electrochemical, and photovoltaic properties were characterized and investigated. The polymers exhibited good thermal stability with decomposition temperature in the region of 342–390 °C and their glass transition temperatures (Tg) ranging from 126 to 150 °C. All polymers demonstrate broad optical absorption in the region of 300–500 nm with efficient blue‐green light emission. They showed ambipolar redox properties with low HOMO levels around ?5.13 eV. Polymer solar cells were fabricated using blends of the copolymers and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) in a 1:1 weight ratio. The maximum power conversion efficiency (η = 0.24%) was measured for the poly[3,7‐ (10‐hexylphenothiazine)‐alt‐bithiophene] as donor under simulated sun light (1000 W/m2). Open circuit voltages of up to 0.8 V have been obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5266–5276, 2007  相似文献   

13.
3-(4-Aminophenyl)-5-(3-aminophenyl)-2-pyrazoline as well as the 1-acetyl- or 1-benzoyl-substituted derivatives of this compound were synthesized and used for preparing a new series of polyamides and polyimides. Characterization of polymers was accomplished by inherent viscosity, 1H-NMR, 13C-NMR, x-ray, DTA, TMA, TGA, and isothermal gravimetric analysis. The properties of polymers were correlated with their chemical structures. They were amorphous or microcrystalline and soluble in polar aprotic solvents, CCl3COOH, and m-cresol. The polyamides showed an excellent solubility being soluble even in o-dichlorobenzene, 1,2-dichloroethane, and chloroform. The polymers displayed Tg at 127–163°C and softening at 150–195°C. The polyamide bearing unsubstituted pyrazoline moieties was remarkably more hydrophilic than those containing 1-acetyl- or 1-benzoyl-substituted pyrazoline segments. Upon curing, crosslinked polymers were obtained and their thermal stability was evaluated. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1353–1361, 1997  相似文献   

14.
Novel hot-melt type flexible, tough, thermally stable, processable, thermoplastic, aromatic polyimides have been synthesized involving reaction of a keto-ether containing diamine with hinged aromatic dianhydrides followed by thermal and chemical cyclodehydration. Inherent viscosity in DMAC at 35°C of the synthesized polymers ranged 1.02 to 1.4 dl/g (0.5% solution). The polymers showed a glass transition temperature (Tg) of 250°C to 180°C as determined by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA). Thermogravimetric analysis showed polymer stability up to 510°C, in both air and nitrogen atmospheres. All the polymers have shown good melt-flow. Films of 1.5–2.8 ml thickness were made and tested for mechanical properties at room temperature, 177°C and 210°C. The developed films are suitable for adhesion of Ti/Ti specimens and showed a lap shear strength of 5575 psi. Melt-fusion of the polymers gave tough moldings. Graphite cloth composites have been made and tested for mechanical properties.  相似文献   

15.
A novel class of fire- and heat-resistant matrix resins has been synthesized by thermal polymerization of ethynyl-substituted aromatic cyclotriphosphazenes. Thermal polymerization of new tris[4-(4′-ethynylbenzanilido)phenoxy]tris(phenoxy) cyclotriphosphazene ( III ) and tris[4-(4′-ethynylphthalimido)phenoxy]tris(phenoxy)cyclotriphosphazene ( VII ) at 250°C for 1–1.5 h gave tough polymers. The thermal stabilities of the polymers were evaluated in nitrogen and in air by thermogravimetric analysis (TGA). The synthesised polymers were stable to 400–410°C and showed char yield of 78–65% at 800°C in nitrogen and of 78–69% at 700°C in air. The ethynyl-substituted polymer precursor ( III ) was synthesised by the reaction of tris(4-aminophenoxy)tris(phenoxy)cyclotriphosphazene ( I ) with 4-ethynylbenzoyl chloride. The polymer precursor ( VII ) was synthesised by a solution condensation of I with 4-ethynylphthalic anhydride followed by in situ thermal cyclodehydration at 150°C. The structure of polymer precursors was characterized using proton nuclear magnetic resonance (1H-NMR), infrared (IR) spectroscopy, and elemental analysis. The curing of polymer precursors was monitored by differential scanning calorimetery (DSC) and IR spectroscopy. The synthesised matrix resins are potential candidates for the development of heat- and fire-resistant fiber-reinforced composites. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

17.
Four new cross-linked polymers poly(vinyl m-nitrobenzene)-polyglycidylazides (PVMNB-GAPs) were successfully synthesized using toluene diisocyanate as the cross-linking agent. Their structure was confirmed by their FTIR, UV–Vis, 1H and 13C NMR spectroscopy. Moreover, the thermal properties of cross-linked polymers were evaluated by DTA, TGA and DSC techniques, which confirmed that synthesized polymers exhibited good resistance to thermal decomposition up to 200°C. In addition, their compatibility with the main energetic components of 2,4,6-trinitrotoluene-based melt-cast explosives were also evaluated by the non-isothermal differential thermal analysis method.  相似文献   

18.
Six new structurally different bismaleimides or bisnadimides based on 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene (BADT) were synthesized and characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Chain-extension of several bismaleimides was accomplished by incorporating various imide, amide, and urea groups. The bismaleimide and bisnadimide prepared by reacting BADT with maleic or nadic anhydride, respectively, were soluble in various organic solvents. The monomers were thermally polymerized or by a Michael reaction with certain aromatic diamines. Curing behavior was investigated by differential thermal analysis (DTA). The thermal and thermo-oxidative stability of polymers was evaluated by dynamic thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). The polymers derived from bismaleimide of BADT as well as from the bismaleimides chain-extended by imide groups were stable up to 355–392°C in N2 or air and afforded anaerobic char yield 66–74% at 800°C. The polymers obtained by curing the bismaleimide-diamine adducts showed a relatively lower thermal stability.  相似文献   

19.
Seven new structurally different bismaleimides were synthesized and characterized by infrared and proton nuclear magnetic resonance spectroscopy. The chain of these polymer precursors was extended by incorporating amidized, imidized, and esterified 4-chloroformyl phthalic anhydride. The bismaleimides containing amide and imide linkages were prepared by a simple synthetic route based on the reaction of the monomaleamic acid derived from various aromatic diamines (1 mol) with 4-chloroformyl phthalic anhydride (0.5 mol) and subsequent cyclodehydration of the intermediate triamic acid. In addition, chain extended bismaleimides were prepared by reacting the monomaleamic acid derived from p-phenylenediamine with several dianhydrides such as p-phenylene bis(trimellitamide anhydride), p-phenylene bis(trimellitate anhydride), and bis-phenol A bis(trimellitate anhydride). The differential thermal analysis scans of bismaleimides showed exotherms at 221–304°C associated with their polymerization reactions. The thermogravimetric analysis traces of polymers did not show a weight loss up to 351–393 and 344–372°C in N2 and air atmospheres, respectively. The anaerobic char yield of polymers at 800°C was 44–61%. These polymers can be used for fabrication of composites having improved properties.  相似文献   

20.
Several new poly(pyridinium salt)s with quinoline diamine moieties in their backbones with tosylate and triflimide counterion were prepared by either a ring‐transmutation polymerization reaction with bis(pyrylium tosylate) with a series of isomeric quinoline diamines in dimethyl sulfoxide (DMSO) for 48 h at 130–140 °C or a metathesis reaction of the tosylate polymers with lithium triflimide in DMSO at about 60 °C. Their chemical structures were confirmed by FTIR, 1H and 13C NMR spectroscopy, and elemental analysis. Their number‐average molecular weights (Mn) were in the range of 18,000–58,000, and their polydispersities were in the range of 1.12–1.53 as determined by gel permeation chromatography. They had thermal stability in the temperature range of 353–455 °C and glass‐transition temperatures >240 °C. They had good solubility in common organic solvents and were characterized with polarizing optical microscopy (POM) studies for their lyotropic liquid‐crystalline properties. Their light‐emission properties were examined by spectrofluorometry in both the solution and film states. Their quantum yields were also determined. Additionally, their morphologies in the thin‐film states and melt‐drawn fibers were examined with POM, scanning electron microscopy, and transmission electron microscopy techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号