首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new sample introduction method of capillary electrophoresis, in which field-amplified sample injection was combined with a pre-concentration of non-uniform field electrophoresis, is presented in this paper. With an additional pre-concentration voltage applied to sample solution, a non-uniform electric field was generated, with which analytical cations or anions were pre-concentrated around an electrode adjacent to the injection end of capillary. After the pre-concentration, analytical ions were injected into the capillary and stacked at the boundary between sample and buffer solution inside capillary by field-amplified injection technique. In contrast to the conventional field-amplified injection, larger concentration factor and higher analytical sensitivity were obtained with the improved pre-concentration method. Its concentration factor was about 10 approximately 15 fold as that of field-amplified sample injection.  相似文献   

2.
In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH)3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation.  相似文献   

3.
For the first time, a multisyringe flow injection analysis capillary electrophoresis system is described. The potential of the hyphenation for sample treatment including analyte pre-concentration is demonstrated by its successful application to the determination of mono-nitrophenols (NPs) in different water samples. The analytical system was used to automate in-line sample acidification, analyte pre-concentration, elution, hydrodynamic injection, electrophoretic separation, and detection as well as the maintenance and re-conditioning of the solid-phase extraction (SPE) column and the separation capillary. A pre-concentration factor of better than 115 and detection down to 0.11 micromol L(-1) were achieved. Detection was carried out at visible wavelength using a blue LED as a low baseline-noise light source. High repeatability was obtained each for migration times and for peak heights with relative standard deviations typically below 2.5 and 6% including the pre-concentration procedure, respectively. Three injections per hour were achieved by running in parallel the pre-concentrating and the electrophoretic separation procedures. Instrumental control and data registration and evaluation were carried out with the software package AutoAnalysis, allowing autonomous operation of the analytical system.  相似文献   

4.
A capillary electrophoresis method with UV-absorbance detection was studied and optimized for the determination of underivatized amino acids in urine. To improve concentration sensitivity the utility of in-capillary analyte stacking via dynamic pH junction was investigated with phenylalanine (Phe) and tyrosine (Tyr) as model amino acids. Before sample injection, a plug of ammonium hydroxide solution was injected to enable analyte concentration. Samples were 1:1 (v/v) mixed with background electrolyte (1 M formic acid) prior to injection. The effect of the injected sample volume, and the injected ammonium hydroxide volume and concentration on analyte stacking and separation performance was investigated. The optimal volume of ammonium hydroxide depended on the injected sample volume. Using a dynamic pH junction good resolution (1.4) was obtained for a sample injection volume of 10% of the capillary (196 nl) with Phe and Tyr dissolved in water. Limits of detection (LODs) were 0.036 and 0.049 μM for Phe and Tyr, respectively. For urine samples, the optimized procedure comprised a 1.7-nl injection of 12.5% ammonium hydroxide, followed by a 196-nl injection of urine spiked with Phe and Tyr. Satisfactory resolution was obtained and amino acid peak widths at half height were only 1.6 s indicating efficient stacking. Calibration plots for Phe and Tyr in urine showed good linearity (R(2) > 0.96) in the concentration range 10-175 μM, and LODs for Phe and Tyr were 0.054 and 0.019 μM, respectively. RSDs for peak area and migration time for Phe and Tyr were below 7.5% and 0.75%, respectively.  相似文献   

5.
Lin CC  Lee GB  Chen SH 《Electrophoresis》2002,23(20):3550-3557
Automation of electrophoretic microchips for sequential analysis of different samples is demonstrated. This system used an autosampler, which was on-line connected to the microchip and the whole process including sample loading and injection, analysis and data acquisition as well as washing were all automated. Rhodamin B at different concentrations was first loaded into a hydrodynamic flow stream by an autosampler, delivered to the microchip, and then sequentially injected into the electrophoretic microchannel for analysis and detection. Automation was achieved by running two independent programs, one for sample loading by an autosampler and the other one for electrophoretic injection by voltage switching, on the same computer. Using this sampling chip, each loaded volume (0.2-1 microL) can be injected for dozens of electrophoretic analyses (1-10 nL for each injection). The variances caused by the external connections, which did not affect the electrophoretic analysis but would cause band broadening of the loaded sample in the hydrodynamic flow stream, were theoretically deduced. Results indicate that the dead volume (approximately 300 nL) due to the connection fitting on the chip could lead to dilution of the loaded sample by a factor of one when 0.2 microL of sample was loaded. Such a design allows sequential analysis of a series of samples while the running buffer is continuously pumped into the connection capillary as well as microchannels for washing between two loaded samples to minimize cross contamination without human intervention. Using this sampling chip, the required sample amount and handling time can be greatly reduced compared to the manual method.  相似文献   

6.
Summary A large volume injection system for preparative supercritical fluid chromatography is described. The method which is based on the solvent venting technique coupled with dilution of the sample solution consists of three steps. The first step is continuous dilution of the sample solution with liquid carbon dioxide at a controlled flow rate. The second step is solvent removal and solute trapping in a packed trap column. Combination of these two steps results in efficient solvent removal and the volume of sample which can be injected in a single injection becomes virtually unlimited. The third step is transfer and re-concentration of the solutes from the trap column on to the separation column with the pressures of both columns controlled independently; the final step is the separation. With this method, mass overloading behavior has been investigated and preparative separations performed.  相似文献   

7.
A Plackett–Burman 27×3/32 design for seven factors (sample pH, sample flow rate, eluent volume, eluent concentration, eluent flow rate, ethanol percentage in the eluent and mini-column diameter) was carried out in order to find the significant variables affecting the field flow pre-concentration system (FFPS) and the flow injection elution manifold for copper determination in seawater samples by flame atomic absorption spectrometry. By using the optimized flow systems, seawater samples were collected and pre-concentrated in situ by passing them with a peristaltic pump through a mini-column packed with Amberlite XAD-4 impregnated with the complexing agent 4-(2-pyridylazo) resorcinol. Thus, copper is pre-concentrated without the interference of the saline matrix. Once in the laboratory, the mini-columns loaded with copper are incorporated into a flow injection system and eluted with a small volume of a 40% (v/v) ethanolic solution of 3 mol l−1 hydrochloric acid into the nebulizer-burner system of a flame atomic absorption spectrometer. Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value.  相似文献   

8.
Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4–6 for the analyte peaks in a 3 cm long analysis channel.  相似文献   

9.
A new cobalt ions pre-concentration method, optimised by fractional factorial design, using multiwall carbon nanotubes (MWCNTs) with further Graphite Furnace Atomic Absorption Spectrometry (GFAAS) quantification is described. The method explores the high chemical and physical stability of MWCNTs for improving the detectability of GFAAS. It is based on off-line pre-concentration of 20.0 mL of sample previously buffered (pH 8.82) on MWCNTs at a flow rate of 10.0 mL min?1. After the pre-concentration procedure, the elution step was carried out with 500 µL of 0.524 mol L?1 HNO3 solution at a flow rate of 2.0 mL min?1. Fractional factorial designs and response surface methodology were employed for optimisation of all chemical parameters involved in the pre-concentration procedure, including pre-concentration flow rate, buffer and eluent concentration, sample pH and elution volume. The method provides a linear calibration range from 0.03 up to 7.00 µg L?1 with linear correlation coefficient higher than 0.9994 and limits of detection and quantification of 0.01 and 0.03 µg L?1, respectively. Repeatability of the six measurements was found to be 2.38 and 1.84% for 0.3 and 4.5 µg L?1 cobalt concentration, respectively. By pre-concentrating 20.0 mL of sample, a pre-concentration factor (PF) of 19.10-fold and a consumption index of 1.05 mL were obtained. The pre-concentration efficiency (PE) was found to be 9.55 min?1. The proposed method was successfully applied for the pre-concentration and determination of cobalt in water and urine samples with satisfactory recovery values.  相似文献   

10.
An unmodified split/splitless inlet system using forward-pressure controlled pneumatics was operated in splitless injection mode with several inlet liners under a range of septum purge flow rates. The relative recovery (discrimination) of hydrocarbons ranging from n-C8 to n-C20 depended strongly upon the injected sample volume with open-ended liners at high septum purge flow rates of e.g. 50 mL/min. Little or no discrimination was observed at septum purge flows of 2–3 mL/min. The same inlet was also operated in a back-pressure regulated configuration that produced mass discrimination similar to that observed with the higher septum purge flows in the forward-pressure configuration. An inlet liner with a restricted inlet and outlet gave mass-discrimination levels independent of septum purge flow rate, but in the reverse sense of that observed with open-ended liners. Preferential volatile-component losses out of the inlet liner to the septum purge vent are principally responsible for the observed mass discrimination with openended liners, while mass-dependent losses with doubly-restricted liners seem due to slow sample evaporation.  相似文献   

11.
The reaction between α,α-dialkylated amino acids and amino acid N-carboxyanhydrides is slow leading to low concentrations of products (peptides). The detection by capillary electrophoresis of the analytes contained in such samples is therefore a challenging issue. In this work, on-line sample pre-concentration methods based on field-amplified sample stacking have been implemented and compared. Because of the high ionic strength present in the sample matrix, samples were diluted with an organic solvent prior to analysis to decrease the sample conductivity. Different modes of sample injection (field amplified sample injection (FASI), hydrodynamic normal sample stacking (NSS) or large volume sample stacking (LVSS)) were compared. Pre-concentration factors of 20 for FASI, about 30–40 for NSS and 60 for LVSS were obtained for the analysis of (l,l) dipeptide of valine in a large excess of isovaline and 0.2 M of ionic strength. For LVSS application and resolution optimisation, a new non-covalent coating based on the partial modification of the capillary surface was used to tune the electroosmotic flow magnitude and to pump the sample matrix out of the capillary. This on-line sample pre-concentration step allowed confirming that oligopeptides including α,α-dialkylated amino acids are formed during the reaction between α,α-dialkylated amino acids and N-carboxyanhydride amino acids.  相似文献   

12.
The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.  相似文献   

13.
手控注射分离器分离富集火焰原子吸收测定蔬菜中的铅;  相似文献   

14.
A software-controlled flow-through optical fiber diffuse reflectance sensor capitalized on the implementation of disk-based solid-phase pre-concentration schemes in a multisyringe flow injection analysis (MSFIA) set-up is proposed for the trace determination of sulfide in environmental waters and wastewaters. The fully automated flowing methodology is based on Fischer's coupling reaction of sulfide with N,N-dimethyl-p-phenylenediamine (DMPD) in the presence of Fe(iii) as oxidizing reagent in a 0.5 M HCl medium. The on-line generated methylene blue dye is subsequently delivered downstream to a dedicated optode cell furnished with an octadecyl-chemically modified (C(18)) disk, while continuously recording the diffuse reflectance spectrum of the pre-concentrated compound. A double regeneration protocol is finally executed to warrant minimum background noise and negligible baseline. Under the optimized chemical and hydrodynamic conditions, the optosensing MSFIA method features coefficients of variation better than 0.7%(n= 10) at 50 microg l(-1) concentration, a linear working range of 20-200 microg l(-1) sulfide, a 3sigma(blank) detection limit of 2.9 microg l(-1) sulfide and an injection throughput of 8 h(-1) for a pre-concentration sample volume of 2.9 ml. The interfacing of the robust and versatile multisyringe flow injection-based optode with a plug-in spectrophotometer furnished with a light emitting diode assures the miniaturization of the overall flow analyzer, which is, thus, readily adaptable to real-time monitoring schemes. The potential of the multisyringe flow method was assessed via the determination of sulfide traces in water samples of different complexity (namely, freshwater, seawater and wastewater).  相似文献   

15.
Multiple injection techniques for microfluidic sample handling   总被引:1,自引:0,他引:1  
Fu LM  Yang RJ  Lee GB  Pan YJ 《Electrophoresis》2003,24(17):3026-3032
This paper presents an experimental and numerical investigation into electrokinetic focusing flow injection for bioanalytical applications on 1 x N (i.e., 1 sample inlet port and N outlet ports) and M x N (i.e., M sample inlet ports and N outlet ports) microfluidic chips. A novel device is presented which integrates two important microfluidic phenomena, namely electrokinetic focusing and valveless flow switching within multiported microchannels. The study proposes a voltage control model which achieves electrokinetic focusing in a prefocusing sample injection system and which allows the volume of the sample to be controlled. Using the developed methods, the study shows how the sample may be prefocused electrokinetically into a narrow stream prior to being injected continuously into specified outlet ports. The microfluidic chips presented within this paper possess an exciting potential for use in a variety of techniques, including high-throughput chemical analysis, cell fusion, fraction collection, fast sample mixing, and many other applications within the micrototalanalysis systems field.  相似文献   

16.
A new method for injecting and driving fluids by means of a multi-port injection valve and syringe pumps in a micro-channel network is described. A structure composed of two micro-channels arranged as a cross is connected with capillary tubes to an external multi-port injection valve. The fluid flows are driven by pressure and the multi-port valve controls the direction of the flow within the different sections of the structure. The first position of the multi-port valve allows the preparation of the loading of the sample, which is pinched in the cross section of the two micro-channels. The second position allows the precise injection of nL volumes. No dead volume exists between injection and separation modes. The system can be used to prepare a sample plug by pressure in order to perform chromatography with a broad range of buffered or non-buffered solutions. Thanks to the insensitivity to the ionic strength of the sample, this injection method is useful for the injection of complex biological samples in microchip analysis. In order to demonstrate the feasibility of the method, different solutions of ionic or fluorescent molecules were injected and detected in a photoablated planar polymer device.  相似文献   

17.
We have developed a consecutive sample-injection device for capillary electrophoresis, which comprises one four-way cock, two syringe pumps, and an interface part taking advantage of two three-way Teflon joints. Sample introduction into the capillary is made hydrodynamically by pressure, caused by the flow of the sample solution at the tip of the capillary inlet. We combined the injection device with a capillary electrophoresis-chemiluminescence detection system. A mixture solution of N-(4-aminobutyl)-N-ethylisoluminol, isoluminol isothiocyanate, and luminol was analyzed as a model sample by the present system. The sample solution was consecutively injected and detected with about a 230 s interval. The present capillary electrophoresis-chemiluminescence detection system with the consecutive sample injection device features easy and rapid operation, an inexpensive apparatus, high sensitivity, as well as consecutive analysis.  相似文献   

18.
Two flow field flow fractionation (FlFFF) systems: symmetrical (SFlFFF) and asymmetrical (ASFlFFF) were evaluated to fractionate river colloids. Samples stability during storage and colloids concentration are the main challenges limiting their fractionation and characterization by FlFFF. A pre-fractionation (<0.45 microm) and addition of a bactericide such as NaN3 into river colloidal samples allowed obtaining stable samples without inducing any modification to their size. Stirred cell ultra-filtration allowed colloidal concentration enrichment of 25-folds. Scanning electron microscope (SEM) micrographs confirmed the gentle pre-concentration of river samples using the ultra-filtration stirred cell. Additionally, larger sample injection volume in the case of SFlFFF and on channel concentration in the case of ASFlFFF were applied to minimize the required pre-concentration. Multi angle laser light scattering (MALLS), and transmission electron microscope (TEM) techniques are used to evaluate FlFFF fractionation behavior and the possible artifacts during fractionation process. This study demonstrates that, FlFFF-MALLS-TEM coupling is a valuable method to fractionate and characterize colloids. Results prove an ideal fractionation behavior in case of Brugeilles sample and steric effect influencing the elution mode in case of Cézerat and Chatillon. Furthermore, comparison of SFlFFF and ASFlFFF fractograms for the same sample shows small differences in particle size distributions.  相似文献   

19.
The contributions of the volume of sample injected, the mobile phase flow rate, the inner diameter of the needle seat capillary and that of the connector capillary, the heat exchanger, and the detector cell volume to the widths of bands eluted from the 1290 Infinity HPLC instrument were investigated in depth. Four sample volumes (0.16, 0.80, 4.0, and 20 μL), three flow rates (0.04, 0.4, and 4.0 mL/min), two needle seat capillary I.D. (100 mm × 115 and 140 μm), three sets of connector capillary I.D. (350 mm × 80, 115, and 140 μm placed upstream the column, and 220 mm × 80, 115, and 140 μm downstream the column), two UV detector cell volumes (0.8 and 2.4 μL), and the presence/absence of the heat exchanger (1.6 μL) between the inlet connector capillary tube and the column were combined to generate up to 4 × 3 × 2 × 3 × 2 × 2=288 system configurations for this instrument. For each configuration, 5 consecutive injections were performed in order to assess the injection-to-injection repeatability, providing 1440 elution band profiles which are analyzed. The results demonstrate that the band broadening contribution of the instrument depends mostly on the detector cell volume and on the inner diameter of the needle seat capillary tube. The impact of these two contributions is particularly important at high flow rates (4 mL/min). Best efficiencies are obtained with a small sample volume, below 1 μL, which avoids volume overload of the instrument, or with large sample volumes, which maximize the radial concentration gradients of the sample across the instrument channels, in the vicinity of the anfractuosities of the channel walls. The injection of large sample volumes reveals the imperfection of current injection systems, the performance of which is remote from the one expected to provide an ideal rectangular injection (~+4 μL(2)). Although the present behavior of the instrument is satisfactory, serious improvements would become necessary to operate the next generation of more efficient columns that might be commercialized soon.  相似文献   

20.
A time-based flow injection (FI) separation pre-concentration system coupled to an electrothermal atomic absorption spectrometer (graphite furnace) has been developed for the direct ultra-trace determination of selenite and selenate in drinking water. The pre-concentration of both forms of selenium is carried out onto a micro-column packed with an anionic resin (Dowex 1X8) that is placed in the robotic arm of the autosampling device. Selenite and selenate are sequentially eluted with HCl 0.1 M and HCl 4 M, respectively. The interference of large quantities of chloride during selenium atomisation is prevented by using iridium as a “permanent” chemical modifier. The features of the pre-concentration separation system for both species are: 53% efficiency of retention and an enhancement factor of 82 for a pre-concentration time of 180 s (sample flow rate=3 ml min−1) with HCl elution volumes of 100 μl. The detection limit (3 s) is 10 ng l−1 for the two species and the relative standard deviation (n=10) at the 200 ng l−1 level is 3.5% for selenite and 5.6% for selenate. The addition of selenite and selenate stock standard solutions to tap water samples yields a 97-103% recovery of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号