首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Miniaturized and capillary techniques will gradually become more important in Liquid Chromatography (LC). Micro-LC, or the chromatography in fused silica packed capillary columns, has so many important advantages and characteristics that this is probably the form of miniaturized LC that has the greatest chance to make it. These advantages, as discussed in the present paper should lead to LC in less than 30 minutes with a plate number for the column of 20,000 to 50,000. Unlike Capillary GC which took about 25 years to assert itself Micro-IC will probably not take so long.  相似文献   

2.
Microcolumn liquid chromatography (micro-LC) of some chiral organophosphorus pesticides has been studied using Chiralcel OD columns and simultaneous ultraviolet (UV) and phosphorus selective detection, the latter by means of a micro-UV cell coupled on-line to a thermionic detector (TID). Micro-LC showed a ca. 5-fold improved separation impedance, a ca. 1.8-fold increased column permeability, and greater inertness compared with conventional LC. By using the TID, organophosphorus pesticides could be satisfactorily determined at trace levels, the detection limit being 4 pg/s of phosphorus. The response of the micro-LC-TID system is linear in the range of 0.05–20 ng (r = 0.9994).  相似文献   

3.
Narrow-bore column liquid chromatography coupled on-line with capillary gas chromatography (LC/GC) is used for the determination of polychlorinated biphenyls (PCBs) in sediment via a heart-cutting technique. This method is compared with a method in which two off-line column clean-up steps are used with subsequent analysis by capillary gas chromatography. For the LC/GC analysis the recovery of PCBs was 90–100%. For two sediment samples from the river Meuse the LC/GC and the other, more laborious method showed good agreement.  相似文献   

4.
A comparison of different separation methods (high-performance liquid chromatography (HPLC), capillary HPLC (CHPLC) and pressurized capillary electrochromatography (pCEC)) coupled on-line with mass spectrometry (MS) is undertaken using the separation of a crude extract of ergot fungus (secalis cornuti) as an example. New and simple setups for a two-dimensional CHPLC coupled on-line with electrospray ionization (ESI)-MS (2D-CHPLC-MS) as well as for capillary size-exclusion chromatography performed under pCEC conditions and coupled on-line with ESI-MS (CSEC-pCEC-MS) are shown. In addition, an improved method for column packing is presented.  相似文献   

5.
In this study, methodology was developed for on-line and miniaturized enzymatic digestion with liquid chromatographic (LC) separation and mass spectrometric (MS) detection. A packed capillary LC-MS system was combined with on-line trypsin cleavage of a model protein, lactate dehydrogenase, to provide an efficient system for peptide mapping. The protein was injected onto an enzymatic capillary reactor and the resulting peptides were efficiently trapped on a capillary trapping column. Different trapping columns were evaluated to achieve a high binding capacity for the peptides generated in the enzyme reactor. The peptides were further eluted from the pre-column and separated on an analytical capillary column by a buffer more suitable for the following an electrospray ionisation (ESI) MS process. An important aspect of the on-line approach was the desalting of peptides performed in the trapping column to avoid detrimental signal suppression in the ESI process. The developed on-line system was finally compared to a classical digestion in solution, with reference to peptide sequence coverage and sensitivity. It was shown that the on-line system gave more than 100% higher peptide sequence coverage than traditional digestion methods.  相似文献   

6.
Peptide standards and tryptic digests of ribonuclease B are separated by comprehensive two-dimensional reversed phase liquid chromatography (RPLC) and capillary zone electrophoresis (CZE) and detected on-line by electrospray mass spectrometry. The RPLC column is coupled to the CZE column by a transverse flow gating interface. A new rugged microelectrospray needle is described that combines high ionization efficiency, low flow rates, and a sheath flow. The result is a system combining the separation capabilities of both RPLC and CZE with on-line mass spectrometric detection, all in about 15 min.  相似文献   

7.
A new approach is presented to solve the problem of a long separation time in the second dimension of comprehensive two-dimensional chromatography. The need for a rapid separation in the second column is overcome by repeating analysis of a sample many times. In each of these individual analysis cases the sample is injected into the first dimension column and after a delay a low amount of the effluent at the end of the first column is sampled to the second-dimensional column. The time interval between the samplings from the first column to the second column is constantly increased. Thus, the system enables a comprehensive analysis of the effluent emerging from the first into the second column. This approach, which we call stroboscopic sampling, is tested for coupling high-performance liquid chromatography (HPLC) to capillary electrophoresis (CE) by an interface which operates on the principle of transporting the effluent from the HPLC column to the capillary inlet by small pressure pulses (0.5 MPa). The performance of the interface for accomplishing the comprehensive HPLC-CE analysis was demonstrated for an on-line connection of a short ion-exchange column and an ion-exclusion column to the CE capillary.  相似文献   

8.
Retention gaps with different polarity treatments were evaluated for reversed phase solvents. Aminopropyl- and cyanopropyl-deactivated retention gaps showed the best results for methanol-water mixtures. A reversed phase packed fused silica capillary LC column is connected on-line with a capillary gas chromatography column. The combination was used for the analysis of diazepam in urine. Volume overloading on packed fused silica columns without loss of too much efficiency was demonstrated for propranolol.  相似文献   

9.
A new type of monolithic trapping columns with high mechanical strength was prepared by thin-layer sol–gel coating method and applied to trapping intact proteins for on-line capillary liquid chromatography. Monolithic trapping columns were fabricated by entrapping C8 reversed-phase particles into the capillary columns through a sol–gel network, which was formed by hydrolysis and polycondensation of methyltriethoxysilane. Hundreds times of trapping/untrapping for intact proteins were carried out. The trapping columns showed long-term stability up to 300 bar. Recovery, loading capacity and reproducibility of trapping columns were evaluated using four proteins. The recovery of four protein mixtures for the C8 monolithic trapping columns was 99.3% on average. The loading capacity of 5 mm × 320 μm i.d. C8 trapping columns for the protein mixtures was 30 μg. Day-to-day relative standard deviation (RSD) values for recoveries of protein mixtures on the same C8 trapping column ranged from 2.34 to 5.87%, column-to-column RSD values were from 3.01 to 6.81%. The C8 trapping columns were used to trap normal mouse liver intact proteins in a capillary liquid chromatography system. Results demonstrated high efficiency of the monolithic trapping columns for trapping intact proteins for proteomic analysis in on-line capillary liquid chromatography system.  相似文献   

10.
R. Snel 《Chromatographia》1986,21(5):265-268
Summary A simple gas chromatographic system has been developed for the rapid on-line analysis of light Fischer-Tropsch products. This involves a single chromatography fitted with two columns, a porous-layer open-tubular column coated with KCl deactivated alumina and a packed Porapak-Q column. The capillary column separates the 16 most common C1−C4 hydrocarbons and permits a reasonable analysis of the hydrocarbons in the C5−C7 range. The packed column is used for the separation of methane, carbon monoxide, carbon dioxide, water and methanol. Retention characteristics for the analysis on the capillary column are presented. The total analysis cycle is 30 minutes.  相似文献   

11.
The on-line coupling of a liquid-liquid extraction system with capillary gas chromatography using atomic emission detection (GC-AED) has been studied. The required large volumes of about 100 μl of an iso-octane solution can be introduced into the GC-AED system by using the AED solvent vent and a solvent vapor exit in front of the capillary analytical column. Test solutions containing several pesticides were detected using the carbon, chlorine, nitrogen and sulfur channels. Analyte detectability (in concentration units) was improved significantly and low concentractions of the test compounds could be determined (1–5 ng/ml). Aqueous samples were on-line extracted and analyzed. The precision of the large-volume injection itself as well as the total extraction-GC-AED system was satisfactory (RSD of ca. 2 and 4%, respectively). As a real-life application, several ground water samples were screened.  相似文献   

12.
Coupled liquid chromatography – gas chromatography – mass spectrometry (LC-GC-MS) has been applied for on-line clean up, separation, and identification of chlorinated polycyclic aromatic hydrocarbons (CI-PAHs). A loop-type interface was used to couple the liquid chromatograph on-line with the GC-MS, and concurrent solvent evaporation was used for sample transfer. A back-flush technique was used in conjunction with a two-dimensional column system for isolation of CI-PAHs and polycyclic aromatic hydrocarbons (PAHs). This fraction was transferred on-line to the GC and separated on a capillary column. Selective and sensitive detection of CI-PAHs in the GC eluate was obtained by negative ion chemical ionization (NICI) mass spectrometry and selected ion monitoring (SIM). The combined on-line system for isolation, separation, and identification showed high precision and accuracy, and demonstrated a linear response from 1 to 1000 pg for chlorinated PAHs. The estimated detection limit was 250 fg for 1-chloropyrene and 1,6-dichloropyrene. The technique was demonstrated by analysis of urban air samples. The low detection limit made it possible to use the technique for analysis of personally carried monitoring equipment for measurement of exposure to CI-PAHs in the work environment.  相似文献   

13.
As the serum peptidome gets increasing attention for biomarker discovery, one of the important issues is how to efficiently extract the peptides from highly complex human serum for peptidome analysis. Here we developed a fully automated platform for direct injection, on-line extraction, multidimensional separation and MS detection of peptides present in human serum. A capillary SPE column packed with a novel mix mode restricted access material (RAM) exhibiting strong cation exchange and size exclusion chromatography (SCX/SEC) properties were coupled with a nanoliquid chromatography–mass spectrometry (nanoLC-MS) system. The capillary SPE column excludes the high abundant serum proteins such as HSA by size exclusion chromatography and simultaneously extracts the low molecular weight peptides by binding to sulfonic acid residues. Subsequently, the trapped peptides are eluted to a capillary LC column packed with a RP-C18 stationary phase. After injection of only 2 μL human serum to the one-dimensional nanoLC-MS system around 400 peptides could be identified. When conducting a multidimensional separation, the described SCX/SEC/RP-MS platform allows the separation and identification of 1286 peptides present in human serum by the injection and on-line processing of 20 μL human serum sample.  相似文献   

14.
The feasibility of using ethyl acetate for the desorption of trace pollutants from a liquid chromatographic precolumn on-line into a diphenyltetramethyldisilazane-deactivated retention gap and, subsequently analysis by means of capillary gas chromatography has been demonstrated. First 5% of methanol are added to the water sample to prevent sorption of analytes onto parts of the preconcentration system. About 1 ml of this aqueous sample is injected onto a precolumn containing a polymeric stationary phase, using water–methanol (95:5, v/v) for transport and clean-up. The precolumn is desorbed with ethyl acetate and a fraction of 75 μl is injected on-line into the retention gap; separation is then achieved on a capillary CP Sil 19 column. No breakthrough of the test compounds was observed in the preconcentration step. The recovery was quantitative and the response obtained with flame ionization detection was linear in the range 0.1–100 ng/ml. The effect of varying the sorption flow rate on the recovery was studied. The system was applied to the analysis of river water.  相似文献   

15.
The combination of high performance liquid chromatography interfaced on-line with multidimensional gas chromatography (HPLC–GC–GC) is described. The HPLC column was interfaced to the GC via an on column interface, with automated pneumatic control of solvent evaporation and GC column switching. Cryogenic cold trapping was used for analyte focusing at the head of the first, non-polar GC capillary column and optionally at the head of the second, polar column. The determination of stilbene hormones in corned beef as their methylated derivatives by flame ionization detection is described.  相似文献   

16.
Micro-LC and capillary zone electrophoresis (CZE) are two of the most rapidly developing, miniaturized separation techniques in analytical science. In the present paper, both techniques were comparatively evaluated for the determination of several important thiols derivatized with the fluorogenic reagent SBD-F. Different parameters, such as selectivity, sensitivity, analysis time and efficiency, influence of column length, CZE buffer concentration, and voltage were thus analyzed and discussed. Both techniques are recommended for the analysis of thiols in biological samples.  相似文献   

17.
A two-dimensional capillary array liquid chromatography system coupled with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was developed for high-throughput comprehensive proteomic analysis, in which one strong cation-exchange (SCX) capillary chromatographic column was used as the first separation dimension and 10 parallel reversed-phase liquid chromatographic (RPLC) capillary columns were used as the second separation dimension. A novel multi-channel interface was designed and fabricated for on-line coupling of the SCX to RPLC column array system. Besides the high resolution based on the combination of SCX and RPLC separation, the developed new system provided the most rapid two-dimensional liquid chromatography (2D-LC) separation. Ten three-way micro-splitter valves used as stop-and-flow switches in transferring SCX fractions onto RPLC columns. In addition, the three-way valves also acted as mixing chambers of RPLC effluent with matrix. The system enables on-line mixing of the LC array effluents with matrix solution during the elution and directly depositing the analyte/matrix mixtures on MALDI plates from the tenplexed channels in parallel through an array of capillary tips. With the novel system, thousands of peptides were well separated and deposited on MALDI plates only in 150min for a complex proteome sample. Compared with common 2D-LC system, the parallel 2D-LC system showed about 10-times faster analytical procedure. In combination with a high throughput tandem time of flight mass spectrometry, the system was proven to be very effective for proteome analysis by analyzing a complicated sample, soluble proteins extracted from a liver cancer tissue, in which over 1202 proteins were identified.  相似文献   

18.
A high performance liquid chromatography system, a sample preparation device, and an imaged capillary IEF (CIEF) instrument are integrated and multiplexed on-line. The system is equivalent to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), by transferring the principle of 2-D separation to the capillary format. High performance liquid chromatography (HPLC) provides protein separation based on size using a gel filtration chromatography (GFC) column. Each eluted protein is sampled and directed to a novel microdialysis hollow fiber membrane device, where simultaneous desalting and carrier ampholyte mixing occurs. The sample is then driven to the separation column in an on-line fashion, where CIEF takes place. The fluidic technology used by our 2-D system leads to natural automation. The coupling of the two techniques is simple. This is attributed to high speed and efficiency of the sample preparation device that acts as an interface between the two systems, as well as the speed and simplicity of our whole column absorption imaged CIEF instrument. To demonstrate the feasibility of this approach, the separation of a mixture of two model proteins is studied. Sample preparation and CIEF were complete in just 4-5 min, for each of the eluted proteins. Total analysis time is about 24 min. Three-dimensional data representations are constructed. Challenges and methods to further improve our instrument are discussed, and the design of an improved horseshoe-shaped sample preparation sample loop membrane interface is presented and characterized.  相似文献   

19.
An on-line monitoring system has been developed for the control of a biorreactor for the anaerobic pretreatment of an industrial waste water. The monitoring system is based on a process mass spectrometer with a temperature controlled membrane inlet. The membrane introduction mass spectrometer (MIMS) is coupled with a resistively heated metal gas chromatography capillary column, which serves as a transfer line between the bioreactor and the MIMS. Sampling and injection is performed by means of a pneumatically driven membrane probe, which enables monitoring of soluted and gaseous substances in the fermentation broth. The system can also be coupled to other processes.  相似文献   

20.
The separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent. The combination of high-resolution chromatography with high-accuracy MS allowed to distinguish protein isoforms that differ only in their oxidation and biotinylation state allowing the separation between structural isoforms. Finally, the potential to separate proteins isoforms due to glycosylation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号