共查询到20条相似文献,搜索用时 15 毫秒
1.
Flowing and static gas-phase samples of HNO3 in O2 and N2 were analyzed by long-path ultraviolet/visible (UV/VIS) spectroscopy to reveal the presence of both NO2 and NO3, the concentrations of which were calculated using differential absorption cross sections. NO2 is produced predominantly by the heterogeneous decomposition of HNO3, whereas NO3 is generated in the gas phase by the thermal decomposition of N2O5, a product of the self-disproportionation of liquid HNO3. © 1993 John Wiley & Sons, Inc. 相似文献
2.
The gas-phase reaction of NO3 radicals with isoprene was investigated under flow conditions at 298 K in the pressure range 6.8<P(mbar)<100 using GC-MS/FID, direct MS, and long-path FT–IR spectroscopy as detection techniques. By means of a relative rate method, the rate constant for the primary attack of NO3 radicals toward isoprene was determined to be (6.86±2.60)×10−13 cm3 molecule−1 s−1. The formation of the possible oxiranes, 2-methyl-2-vinyl-oxirane and 2-(1-methyl-vinyl)-oxirane, was observed in dependence on total pressure. In the presence of O2 in the carrier gas, the product distribution was found to be strongly dependent on the reaction pathways of formed peroxy radicals. If the peroxy radicals mainly reacted in a self-reaction, the formation of organic nitrates was detected and 4-nitroxy-3-methyl-but-2-enal was identified as a main product. On the other hand, when NO was added to the gas mixture and the peroxy radicals were converted via RO2+NO→RO+NO2, the formation of methyl vinyl ketone as the main product as well as 3-methylfuran and meth-acrolein was observed. From the ratio of the product yields if NO was added to the gas mixture it was concluded that the attack of NO3 radicals predominantly takes place in the 1-position. A reaction mechanism is proposed and the application of these results to the troposphere are discussed. © 1997 John Wiley & Sons, Inc. 相似文献
3.
The reaction has been studied using a discharge-flow tube with resonant fluorescence detection of HO. Measurements of k1 have been made at temperatures between 237 and 404 K. Our results and earlier work suggest that the rate constant has a minimum at T ? 500 K. Below room temperature our results are given by the expression k = (2.0 ± 0.4) × 10?14 exp[(430 ± 60)/T] cm3 molecule?1 s?1, where the error limits include an estimate of the measurement accuracy. No dependence of k1 on pressure at 300 K is observed in studies between 1- and 10-torr helium. An upper limit of kb < 1% k1 at 300 K is given. 相似文献
4.
Zhu Zhaowu He Jianyu Zhang Zefu Zhao Zhiqiang 《Journal of Radioanalytical and Nuclear Chemistry》2003,258(3):557-561
This work is aimed at studying HNO2 generation by bubbling NO in HNO3 solution. The formation and decomposition of HNO2 depend on the 2NO+HNO3+H2O3HNO2 reaction. During the HNO2 generation, the HNO3 concentration was kept constant. The influence of HNO3 concentration, temperature, NaNO3 concentration and NO bubbling rate was studied. Its possible application in the PUREX process was evaluated. 相似文献
5.
Under anaerobic conditions S-nitrosothiols 1a-e undergo thermal decomposition by homolytic cleavage of the S-N bond; the reaction leads to nitric oxide and sulfanyl radicals formed in a reversible manner. The rate constants, k(t), have been determined at different temperatures from kinetic measurements performed in refluxing alkane solvents. The tertiary nitrosothiols 1c (k1(69 degrees C) = 13 x 10(-3) min(-1)) and 1d (k1(69 degrees C) = 91 x 10(-3) min(-1)) decomposed faster than the primary nitrosothiols 1a (k1(69 degrees C) = 3.0 x 10(-3) min(-1)) and 1b (k1(69 degrees C) = 6.5 x 10(-3) min(-1)). The activation energies (E# = 20.5-22.8 Kcal mol(-1)) have been calculated from the Arrhenius equation. Under aerobic conditions the decay of S-nitrosothiols 1a-e takes place by an autocatalytic chain-decomposition process catalyzed by N2O3. The latter is formed by reaction of dioxygen with endogenous and/or exogenous nitric oxide. The autocatalytic decomposition is strongly inhibited by removing the endogenous nitric oxide or by the presence of antioxidants, such as p-cresol, beta-styrene, and BHT. The rate of the chain reaction is independent of the RSNO concentration and decreases with increasing bulkiness of the alkyl group; this shows that steric effects are crucial in the propagation step. 相似文献
6.
Juan M. Antelo Florencio Arce Juan Crugeiras Julia Franco Pilar Rodriguez Angel Varela 《国际化学动力学杂志》1990,22(12):1271-1282
This article reports the kinetics of the decomposition of N-bromoserine formed rapidly by bromation of serine by BrO?. The main decomposition products are glycolaldehyde, ammonia, carbon dioxide, and bromide ions at pH < 11.5, and β-hydroxypyruvic acid, ammonia, and bromide ions at pH > 11.5. The reaction is of order one with respect to N-bromoserine, and is independent of ionic strength and excess serine. The rate constant increases with increasing pH at pH > 11 and with decreasing pH at pH < 8, and over the range pH 8–11 has the constant value 1.67 × 10?3 s?1 at 298 K. 相似文献
7.
The mechanism for the reaction of HCO with HNO has been studied at the G2M level of theory, based on the geometric parameters optimized by the BH&HLYP/6‐311G(d, p) method. There are three direct hydrogen abstraction channels producing (1) H2CO + NO, (2) H2NO + CO, and (3) HNOH + CO with barriers of 3.7, 3.9, and 10.4 kcal/mol, respectively. Another important reaction channel, (4), involves an association process forming HN(O)CHO (LM1) with a very small barrier and the subsequent isomerization and decomposition of LM1 producing HNOH + CO as major products. The rate constants of the dominant reaction channels (1), (2), and (4) in the temperature range 200–3000 K have been predicted by the microcanonical RRKM and transition state theory calculations with Eckart tunneling corrections. The theoretical result shows that in the high temperature range ( T > 1500 K), k1 (H2CO + NO) and k2(H2NO + CO) are preponderant, while in the low temperature range, both k4(LM1) and k4(HNOH + CO) appear to be dominant at high and low pressures, respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 205–215, 2004 相似文献
8.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature. 相似文献
9.
The effects of NO on the decomposition of CH3ONO have been investigated in the temperature range 450–520 K at a constant pressure of 710 torr using He as buffer gas. The measured time-dependent concentration profiles of CH3ONO, NO, N2O, and CH2O can be quantitatively accounted for with a general mechanism consisting of various reactions of CH3O, HNO, and (HNO)2. The results of kinetic modeling with sensitivity analyses indicate that the disappearance rate of CH3ONO is weakly affected by NO addition, whereas that of the HNO intermediate strongly altered by the added NO. In the presence of low NO concentrations, the modeling of N2O yields leads to the rate constant for the bimolecular reaction, HNO + HNO → N2O + H2O (25): In the presence of high NO concentrations (PNO > 50 torr), the modeling of CH2O yields gives the rate constant for the termolecular radical formation channel, HNO + 2NO → HN2O + NO2 (35): Discussion on the mechanisms for reactions (25) and (35), and the alkyl homolog of (35), RNO + 2NO, is presented herein. © John Wiley & Sons, Inc. 相似文献
10.
The combustion chemistry of morpholine (C(4)H(8)ONH) has been experimentally investigated recently as a representative model compound for O- and N-containing structural entities in biomass. Detailed profiles of species indicate the self-breakdown reactions prevailing over oxidative decomposition reactions. In this study, we derive thermodynamic and kinetic properties pertinent to all plausible reactions involved in the self-decomposition of morpholine and its derived morphyl radicals as a crucial task in the development of comprehensive combustion mechanism. Potential energy surfaces have been mapped out for the decomposition of morpholine and the three morphyl radicals. RRKM-based calculations predict the self-decomposition of morpholine to be dominated by 1,3-intramolecular hydrogen shift into the NH group at all temperatures and pressures. Self-decomposition of morpholine is shown to provide pathways for the formation of the experimentally detected products such as ethenol and ethenamine. Energetic requirements of all self-decomposition of morphyl radicals are predicted to be of modest values (i.e., 20-40 kcal/mol) which in turn support the occurrence of breaking-down reactions into two-heavy-atom species and the generation of doubly unsaturated four-heavy-atom segments. Calculated thermochemical parameters (in terms of standard enthalpies of formation, standard entropies, and heat capacities) and kinetic parameters (in terms of reaction rate constants at a high pressure limit) should be instrumental in building a robust kinetic model for the oxidation of morpholine. 相似文献
11.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed. 相似文献
12.
The infrared signatures of nitric acid HNO3 and its conjugate anion NO3(-) at the surface of an aqueous layer are derived from electronic structure calculations at the HF/SBK+* level of theory on the HNO3 x (H2O)3 --> NO3(-) x H3O(+) x (H2O)2 model reaction system embedded in clusters comprising 33, 40, 45, and 50 classical, polarizable waters, mimicking various degrees of solvation [Bianco, R.; Wang, S.; Hynes, J. T. J. Phys. Chem. A 2007, 111, 11033]. The molecular level character of the various bands is discussed, and the solvation patterns are described in terms of hydrogen bonding and resulting polarization of the species' intramolecular bonds. Connection is made with assorted experimental results, including surface-sensitive Sum Frequency Generation spectroscopy of aqueous nitric acid solutions, infrared spectroscopy of amorphous thin films of nitric acid monohydrate (NAM) and dihydrate (NAD), and infrared and Raman spectroscopic results for bulk aqueous solutions of nitric acid and nitrate salts. 相似文献
13.
The kinetics and mechanism of the thermal reduction of NO by H2 have been investigated by FTIR spectrometry in the temperature range of 900 to 1225 K at a constant pressure of 700 torr using mixtures of varying NO/H2 ratios. In about half of our experimental runs, CO was introduced to capture the OH radical formed in the system with the well-known, fast reaction, OH + CO → H + CO2. The rates of NO decay and CO2 formation were kinetically modeled to extract the rate constant for the rate-controlling step, (2) HNO + NO → N2O + OH. Combining the modeled values with those from the computer simulation of earlier kinetic data reported by Hinshelwood and co-workers (refs. [3] and [4]), Graven (ref.[5]), and Kaufman and Decker (ref. [6]) gives rise to the following expression: . This encompasses 45 data points and covers the temperature range of 900 to 1425 K. RRKM calculations based on the latest ab initio MO results indicate that the reaction is controlled by the addition/stabilization processes forming the HN(O)NO intermediate at low temperatures and by the addition/isomerization/decomposition processes producing N2O + OH above 900 K. The calculated value of k2 agrees satisfactorily with the experimental result. © 1995 John Wiley & Sons, Inc. 相似文献
14.
Previously measured decay rates of HNO in the presence of NO have been kinetically modeled on the basis of thermochemical data calculated with the BAC-MP4 technique. The results of this modeling, aided by TST-RRKM calculations for the association of HNO and the isomerization, decomposition, and stabilization of the many dimers of HNO, reveal that the decay of HNO under NO-lean conditions occurs primarily by association forming cis- and trans-(HNO)2 at temperatures below 420 K. N2O, which is a relatively minor product, is believed to be formed by H2O elimination from cis-HON ? NOH, a product of succesive isomerization reactions: trans-(HNO)2? → HN(OH)NO? → HN(O)NOH? → cis-HON NOH?. The calculated rate constants, which fit experimental data quantitatively, can be represented by k = 1016.2 × T?2.40e?590/T cm3/mol sec for the HNO recombination reaction and k = 10?2.44T3.98e?600/T cm3/mol sec for N2O formation in the temperature range 80–420 K, at a total pressure of 710 torr H2 or He. Under NO-rich conditions, HNO reacts predominantly by the exothermic termolecular reaction, HNO + 2NO → HN(NO)ONO → HN NO + NO2, with a rate contant of (6 ± 1) × 109 cm6/mol2 sec at room temperature, based on both HNO decay and NO2 production. All existing thermal kinetic data on HNO + HNO and HNO + 2NO processes can be satisfactorily rationalized with a unified model based on the thermochemical data obtained by BAC-MP4 calculations. 相似文献
15.
H. Spies 《Reaction Kinetics and Catalysis Letters》1979,10(2):131-133
The kinetics of the reaction of pertechnetate with a series of para-substituted benzenethiols have been studied. The reaction follows simple second order kinetics. The rate of reaction decreases as the substituent becomes more electron-withdrawing. The kinetic data suggest that the reaction involves nucleophilic attack of a benzenethiol molecule on technetium.
- . . . , .相似文献
16.
17.
Yuri Bedjanian 《国际化学动力学杂志》2019,51(10):753-759
The kinetics of the reaction of F atom with HNO3, source of NO3 radicals widely used in laboratory studies, has been investigated at nearly 2.7 mbar total pressure of helium over a wide temperature range, T = 220-700 K, using a low-pressure discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer. The rate constant of the reaction F + HNO3 → NO3 + HF (1) was determined using both relative rate method and absolute measurements under pseudo–first-order conditions, monitoring the kinetics of F-atom consumption in excess of HNO3, k1 = (8.2 ± 0.4) × 10−12 exp((315 ± 15)/T) cm3 molecule−1 s−1 (where the uncertainties represent precision at the 2σ level, the estimated total uncertainty on k1 being 15% at all temperatures). The reaction rate constant was found to be in excellent agreement with the only previous temperature-dependent study. Experiments on detection of the reaction product, HF, have shown that NO3 and HF forming channel of the title reaction is the dominant, if not unique, on the whole temperature range of the study. 相似文献
18.
The third order rate coefficients for the addition reaction of Cl with NO2, Cl + NO2 + M → ClNO2 (ClONO) + M; k1, were measured to be k1(He) = (7.5 ± 1.1) × 10?31 cm6 molecule?2 s?1 and k1(N2) = (16.6 ± 3.0) × 10?31 cm6 molecule?2 s?1 at 298 K using the flash photolysis-resonance fluorescence method. The pressure range of the study was 15 to 500 torr He and 19 to 200 torr N2. The temperature dependence of the third order rate coefficients were also measured between 240 and 350 K. The 298 K results are compared with those from previous low pressure studies. 相似文献
19.
The equilibrium constant for the reaction has been determined between 331 and 480°K using a variable-temperature flowing afterglow. These data give ΔH°(1) = -1.03 ± 0.21 kcal/mol and ΔS°(1) = —4.6 ± 1.0 cal/mol°K. When combined with the known thermochemical values for HBr, Br?, and HNO3, this yields ΔH(NO3?) = -74.81 ± 0.54 kcal/mol and S(NO3?) = 59.4 cal/mol·°K. In addition ΔHn-1,n and ΔSn-1,nfor the gas-phase reactions were determined for n = 2 and 3. The implications of these measurements to gas-phase negative ion chemistry are discussed. 相似文献
20.
The reaction of atomic chlorine with CH3CH2OD has been examined using a discharge fast flow system coupled to a mass spectrometer combined with the relative rate method (RR/DF/MS). At 298 ± 2 K, the rate constant for the Cl + CH3CH2OD reaction was determined using cyclohexane as a reference and found to be k3 = (1.13 ± 0.21) × 10?10 cm3 molecule?1 s?1. Mass spectral studies of the reaction products resulted in yields greater than 97% for the combined hydrogen abstraction at the α and β sites (3a + 3b) and less than 3% at the hydroxyl site (3c). As a calibration of the apparatus and the RR/DF/MS technique, the rate constant of the Cl + CH3CH2OH reaction was also determined using cyclohexane as the reference, and a value of k2 = (1.05 ± 0.07) × 10?10 cm3 molecule?1 s?1 was obtained at 298 ± 2 K, which was in excellent agreement with the value given in current literature. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 584–590, 2004 相似文献