首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fullerence C60‐cryptand 22 was prepared and successfully applied as the electric carrier in the PVC electrode membrane of a bifunctional ion‐selective electrode for cations, e.g., Ag+ ions as well as anions, e.g., I? ions. The bifunctional ion‐selective electrode based on C60‐cryptand 22 can be applied as a Silver (Ag+) ion selective electrode with an internal electrode solution of 10?3 M AgNO3 in water (pH = 6.3), or as an Iodide (I?) ion selective electrode with an acidic internal electrode solution of 10?4 M KI(aq) (pH = 2) in which the cryptand 22 is protonated, and the C60‐cryptand 22 is changed to C60‐Cryptand22–H+ and becomes an anionic electro‐carrier to absorb the I? ion. The Ag+ ion selective electrode based on C60‐cryptand 22 gave a linear response with a near‐Nernstian slope (59.5 mV decade?1) within the concentration range 10?1‐10?3 M Ag+(aq). The Ag+ ion electrode exhibited comparatively good selectivity for silver ions, over other transition‐metal ions, alkali and alkaline earth metal ions. The Ag+ ion selective electrode with good stability and reproducibility was successfully used for the titration of Ag+(aq) with Cl? ions. The Iodide (I?) Ion selective electrode based on protonated C60–cryptand22‐H+ also showed a linear response with a nearly Nernstian slope (58.5 mV decade?1) within 10?1 ‐ 10?3 M I? (aq) and exhibited good selectivity for I? ions and had small selectivity coefficients (10?2–10?3) for most of other anions, e.g., F? , OH?, CH3COO?, SO42?, CO32?, CrO42?, Cr2O72? and PO43? ions.  相似文献   

2.
A new podand of 1,1′‐thia‐bis‐[1‐(chloroethan‐2‐acetamid‐α‐oxy)] naphtol was synthesized and used as a suitable carrier for Ag+ PVC membrane electrode. The electrode exhibited linear response with a Nernstian slope of (59.5±0.8 mV/decade) within a wide concentration range of 1.0×10?7 to 1.5×10?2 mol L?1 silver ions. The electrode had a fast response time of <10 s and detection limit of 8.6×10?8 mol L?1 with a working pH range from 3.7 to 9.0. The electrode was highly selective for Ag(I) ions over a large number of cations such as alkali, alkaline earth, and heavy metal ions. The proposed sensor has been applied as an indicator electrode for indirect determination of vitamin B1 in tablets by determination of Cl? ions in this compound with a standard solution of Ag(NO3).  相似文献   

3.
Responses of organic fluorophore, perylenediimide derivative N,N′-di[3-[2-(3-thienyl)ethyl]phenyl]perylene-3,4,9,10-bis-(dicarboxyimide) (PDI1) was investigated in polymer matrix of polyvinyl chloride (PVC) by emission spectrometry. Its response to Fe(III) ions was evaluated in terms of the effect of pH. The properties of time dependent response, reversibility, limit of detection, linear concentration range for the metal ion and repeatability characteristics of the sensing element also have been studied. The offered sensor exhibited remarkable fluorescence intensity quenching at pH 6.0 in the concentration range of 1 × 10?6 to 2.5 × 10?3 M Fe(III) ions. The reproducibility of the sensor membrane was investigated by alternately changing the solution between 1 × 10?4 M Fe(III) in Na2HPO4 (4 × 10?2 M) and NaH2PO4 buffer (2 × 10?3 M).  相似文献   

4.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

5.
2,5-Dioxo-4-imidazolidinyl was used as an excellent sensing material in the preparation of a PVC membrane for a Ce(III)-selective sensor. The electrode shows a good selectivity for the Ce(III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. The developed sensor exhibits a wide linear response with a slope of 19.6?±?0.3 mV per decade over the concentration range of 1.0?×?10?6 to 1.0?×?10?1 M, while the illustrated detection limit is 5.7?×?10?7 M of Ce(III) ions. Moreover, it is concluded that the sensor response is pH-independent in the range of 3.1–9.8. The applications of the recommended electrode include the determination of concentration of Ce(III) ions in soil and sediment samples, validation with CRM's, and the Ce(III) ion potentiometric titration with EDTA as an indicator electrode.  相似文献   

6.
《Electroanalysis》2006,18(10):1019-1027
A new PVC membrane potentiometric sensor for Ag(I) ion based on a recently synthesized calix[4]arene compound of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐dihydroxy‐calix[4]arene‐thiacrown‐4 is developed. The electrode exhibits a Nernstian response for Ag(I) ions over a wide concentration range (1.0×10?2?1.0×10?6 M) with a slope of 53.8±1.6 mV per decade. It has a relatively fast response time (5–10 s) and can be used for at least 2 months without any considerable divergence in potentials. The proposed electrode shows high selectivity towards Ag+ ions over Pb2+, Cd2+, Co2+, Zn2+, Cu2+, Ni2+, Sr2+, Mg2+, Ca2+, Li+, K+, Na+, NH4+ ions and can be used in a pH range of 2–6. Only interference of Hg2+ is found. It is successfully used as an indicator electrode in potentiometric titration of a mixture of chloride, bromide and iodide ions.  相似文献   

7.
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)2) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)2 with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e and 4e reactions, occurring simultaneously, to quietly 4e reaction with the increasing chloride ion concentration.  相似文献   

8.
5,11,17,23‐Tetra‐tert‐butyl‐25,26,27,28‐tetrakis(diphenylphosphinoylmethoxy)calix[4]arene ( 1 )has been used for the preparation of a graphite coated thorium ion‐selective electrode (Th4+‐ISE). The plasticized PVC membrane containing 30% PVC, 58% ortho‐nitrophenyloctylether (NPOE), 4% sodium tetraphenylborate (NaTPB) and 8% ionophore was directly coated on a graphite rod. This sensor gave good Nernstian responses with a slope of 15.5 ± 0.1 mV/decade over a concentration range of 1 × 10?5 ?1 × 10?3 M of thorium ions with a limit of detection of 7.9 × 10?6 M. The dynamic response time of the electrode to achieve a steady potential was found to be about 15 seconds. The potential of the prepared sensor was independent of the pH variation in the range 2.3–4.0. The selectivity relative to several mono‐, di‐ and tri‐valent metal ions, i.e. Li+, Na+, K+, Ag+, NH4+, Sr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, La3+, Sm3+, Dy3+, Er3+ and Y3+ was examined. This electrode can be used for 6 months without any considerable divergences in the potential response. The sensor was successfully used as an indicator electrode for the potentiometric titration of a thorium solution using a standard solution of EDTA.  相似文献   

9.
Mashhadizadeh MH  Shoaei IS  Monadi N 《Talanta》2004,64(4):1048-1052
A new PVC membrane potentiometric sensor that is highly selective to Fe(III) ions was prepared by using 2-[(2-hydroxy-1-propenyl-buta-1,3-dienylimino)-methyl]-4-p-tolylazo-phenol [HPDTP] as a suitable carrier. The electrode exhibits a linear response for iron(III) ions over a wide concentration range (3.5 × 10−6 to 4.0 × 10−2) with a super Nernstian slope of 28.5 (±0.5) per decade. The electrode can be used in the pH range from 4.5 to 6.5. The proposed sensor shows fairly a good discriminating ability towards Fe3+ ion in comparison to some hard and soft metals such as Fe2+, Cd2+, Cu2+, Al3+ and Ca2+. It has a response time of <15 s and can be used for at least 2 months without any measurable divergence in response characteristics. The electrode was used in the direct determination of Fe3+ in aqueous samples and as an indicator electrode in potentiometric titration of Fe(III) ions.  相似文献   

10.
《Analytical letters》2012,45(6):1075-1086
Abstract

A novel plasticized membrane sensor for Ho(III) ions based on N‐(1‐thien‐2‐ylmethylene)‐1,3‐benzothiazol‐2‐amine (TBA) as a neutral carrier was prepared. The best performance was obtained with a membrane composition of 31% PVC, 61% benzyle acetate, 2% sodium tetra phenyl borate and 6% carrier. The electrode exhibits a Nernstian response for Ho(III) ions over a particular concentration range (1.0×10?5?1.0×10?2 M) with a slope of 19.7±0.2 mV decade?1. The limit of the detection is 7.0×10?6 M. The sensor has a response time of <15 s and a useful working pH range of 4.0–9.5. The proposed sensor discriminates relatively well towards Ho(III) ions with regard to common alkali, alkaline earth, and specially lanthanide ions. It was successfully applied as an indicator electrode in a potentiometric titration of Ho(III) ions with EDTA. It was also applied in determination of fluoride ions in a mouth wash preparation. The proposed sensor was applied for the determination of Ho(III) ion concentration in binary mixtures.  相似文献   

11.
《Analytical letters》2012,45(8):1596-1609
Abstract

An original highly selective and sensitive PVC membrane sensor, working as a Fe(III) ion selective electrode and using 4‐amino‐6‐methyl‐3‐methylmercapto‐1,2,4‐triazin‐5‐one (AMMTO) as an ionophore, has been developed. This cetain sensor demonstrated the following performance; a linear dynamic range between 1.0×10?6 and 1.0×10?1 M with a near Nernstian slope of 19.4±0.5 mV per decade; a detection limit of 6.8×10?7 M; characteristically, the best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 65.5% nitrophenyl octyl ether, 2% sodium tetraphenyl borate and 2.5% AMMTO. Furthermore, the potentiometric response of the developed electrode is independent of the solution pH in the range of 2.2–4.8. The sensor possesses the advantages of short conditioning time, fast response time (<15 s) and, especially, great selectivity towards transition and heavy metal ions and some mono, di‐ and trivalent cations. The electrode can be used for at least 9 weeks without any considerable potential divergence. It was effectively used as an indicator electrode in the potentiometric titration of Fe(III) ions with EDTA and the direct determination of Fe3+ in different water samples.  相似文献   

12.
《Electroanalysis》2004,16(21):1771-1776
In this work a dysprosium [Dy(III)]‐selective solvent polymeric membrane sensor based on N,N‐bis(pyrrolidene) benzne‐1,2‐diamine, poly(vinyl chloride)(PVC), the plasticizer benzylacetate (BA), and anionic site is described. This sensor responds to Dy(III) activity in a linear range from 1.0×10?5 to 1.0×10?1 M, with a slope of 20.6±0.2 mV per decade and a detection limit of 6.0×10?6 M at the pH range of 3.5–8.0. It has a fast response time of<20 s in the entire concentration range, and can be used for at least 2 months without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in the potentiometric titration of fluoride ions and in determination of concentration of F ions in some mouth washing solutions.  相似文献   

13.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

14.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

15.
《Electroanalysis》2003,15(10):872-877
A new PVC membrane electrode for HSO3? anion based on bis‐urea calix[4]diquinones I–VI as neutral ionophores is prepared. Of the various membranes prepared, the membrane based on calix[4]diquinone III exhibits a linear stable response over a wide concentration range (6.0×10?5?1.0×10?2) with a slope of ?51.5 mV/decade and a detection limit of 2.2×10?6 M. With the exception of HSO3? anion, the remainder of the anions responds based on their hydrophobicity. The membrane revealed improved selectivity coefficients for HSO3? over a wide variety of other anions, and the comparable selectivity for the HSO3?selective membranes is iodide anion.  相似文献   

16.
《Analytical letters》2012,45(15):3139-3152
ABSTRACT

A PVC membrane sensor for Nickel (II) ions based on 2,5-thiophenyl bis(5-tert-butyl-1,3-benzoxazole) as membrane carrier was prepared. The sensor exhibits a Nernstian response for Ni2+ ions over a wide concentration range (10?2–10?5M). It has a relatively fast response time and can be used for at least 2 months without any considerable divergence in potentials. The nature of the plasticizer, the additive, the concentration of internal solutions in the electrodes and the composition of the membrane were investigated. The proposed membrane electrode revealed very good selectivities for Ni2+ over a wide variety of other metal cations and could be used in pH range of 4.0–8.0. It was successfully applied for the direct determination of Ni2+ in solution and as an indicator electrode in potentiometric titration of nickel ion in both water and 85% acetonitrile solutions.  相似文献   

17.
The complex formation equilibria between titanium(IV) and fluoride ions have been studied at 25°C in 3 M(Na)Cl ionic medium by measuring, with an ion selective electrode for F?, the free HF concentration in acid Ti(IV) solutions. The [H+] was kept within 0.25 and I M where the predominant form of uncomplexed metal is the dihydroxotitanium(IV) ion, Ti(OH)2+2. The potentiometric data have been explained by assuming Ti(OH)2F+, TiF4 and HTiF?6, with equilibrium constants given in Table 3. Within the accuracy of the present e.m.f. study, ±0.2 mV, no evidence for intermediate complexes bearing 2, 3 and 5 F? was found.From a special series of measurements, carried out by replacing a large part of the Cl? with ClO?4, it is concluded that no appreciable amount of Ti(IV)Cl complexes is formed at the 3 M level employed as ionic medium.  相似文献   

18.
Prior to this study there were no thermodynamic data for isosaccharinate (ISA) complexes of Fe(III) in the environmental range of pH (>~4.5). This study was undertaken to obtain such data in order to predict Fe(III) behavior in the presence of ISA. The solubility of Fe(OH)3(2-line ferrihydrite), referred to as Fe(OH)3(s), was studied at 22?±?2?°C in: (1) very acidic (0.01?mol·dm?3 H+) to highly alkaline conditions (3?mol·dm?3 NaOH) as a function of time (11?C421?days), and fixed concentrations of 0.01 or 0.001?mol·dm?3 NaISA; and (2) as a function of NaISA concentrations ranging from approximately 0.0001 to 0.256?mol·dm?3 and at fixed pH values of approximately 4.5 and 11.6 to determine the ISA complexes of Fe(III). The data were interpreted using the SIT model that included previously reported stability constants for $ {{\text{Fe(ISA}})_{n}}^{3 - n} $ (with n varying from 1 to 4) and Fe(III)?COH complexes, and the solubility product for Fe(OH)3(s) along with the values for two additional complexes (Fe(OH)2(ISA)(aq) and $ {\text{Fe(OH)}}_{ 3} ( {{\text{ISA}})_{2}}^{2 - } $ ) determined in this study. These extensive data provided a log10 K 0 value of 1.55?±?0.38 for the reaction $ ({\text{Fe}}^{ 3+ } + {\text{ISA}}^{-} + 2 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH}})_{ 2} {\text{ISA(aq}}) + 2 {\text{H}}^{ + } ) $ and a value of ?3.27?±?0.32 for the reaction $ ({\text{Fe}}^{ 3+ } + 2 {\text{ISA}}^{-} + 3 {\text{H}}_{ 2} {\text{O}} \rightleftarrows {\text{Fe(OH)}}_{ 3} ( {\text{ISA}})_{2}^{2 - } + 3 {\text{H}}^{ + } ) $ and show that ISA forms strong complexes with Fe(III) which significantly increase the Fe(OH)3(s) solubility at pH?<~12. Thermodynamic calculations show that competition of Fe(III) with tetravalent ions for ISA does not significantly affect the solubilities of tetravalent hydrous oxides (e.g., Th and Np(IV)) in ISA solutions.  相似文献   

19.
《Analytical letters》2012,45(19):1557-1563
Abstract

Solid membranes of copper hexacyanoferrate (III) in Areldite are evaluated as thallium (I) sensitive electrode. The membrane electrode gave a linear near Normstian response to thallium (I) ions in the concentration range 10?1 - 5 × 10?4 M and can be used to estimate T1 (I) down to 10?4 M. The responses of the electrode is fast and steady potentials are obtained in less than a minute. The same membrane has been used over a period of six months without any appreciable drift in potential. The electrode can also be used satisfactory in partially non-aqueous media and in presence of a number of interfering ions. It is superior to the existing T1(I) solid membrane electrodes as it can function in alkaline range also.  相似文献   

20.
Solvent extraction of a mixture of PbII, MnII, FeIII, CoII, NiII and CdII in aqueous perchlorate medium by a phosphorylated hexahomotrioxacalix[3]arene (calix‐3) in dichloromethane shows a significant selectivity towards lead ions. The ligand can also be incorporated into a membrane to provide a new lead ion‐selective electrode (PbII‐ISE). A plasticized PVC membrane containing 30% PVC, 53.5% ortho‐nitrophenyloctylether (NPOE), 4.5% sodium tetraphenylborate (NaTPB) and 12% ionophore was directly coated on a graphite rod. This sensor gave a good Nernstian response of 29.7 ± 0.7 mV decade?1 over a concentration range of 1 × 10?8 – 1 × 10?4 M of lead ions, independent of pH in the range 3‐7, with a detection limit of 0.4 × 10?8 M. The dynamic response time of the electrode to achieve a steady potential was very fast and found to be less than 7 s. The selectivity relative to Ag+, NH4+, Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe3+, La3+, Sm3+, Dy3+, Er3+, Y3+ and Th4+ was examined. The electrode exhibits adequate stability with good reproducibility (with a slope of 29.6 ± 1.5 mV for 8 weeks). The characteristics of the sensor are compared with those of a tetraphosphorylated calix[4]arene (calix‐4) based PbII‐ISE, reported recently. The electrode was successfully used as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for lead ion measurements in various synthetic samples was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号