首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ab initio molecular orbital calculations with moderately large polarization basis sets and including valence-electron correlation have been used to examine the structure and dissociation mechanisms of protonated methanol [CH3OH2]+. Stable isomers and transition structures have been characterized using gradient techniques. Protonated methanol is found to be the only stable isomer in the [CH5O]+ potential surface. There is no evidence for a tightly-bound complex, [HOCH2]+…?H2, analogous to the preferred structure [CH3]+…?H2 of [CH5]+. Protonated methanol is found to possess a pyramidal arrangement of bonds at the oxygen atom with a barrier to inversion of 8kJ mol?1. The lowest energy fragmentation pathways are dissociation into methyl cation and water (predicted to require 284 kJ mol?1 with zero reverse activation energy) and loss of molecular hydrogen (endothermic by 138 kJ mol?1 but with a reverse activation barrier of 149 kJ mol?1). The results offer a possible explanation as to why production of [CH2OH]+ from the reaction of methyl cation with water is not observed. Other dissociation processes examined include loss of a hydrogen atom to yield the methylenoxonium radical cation or methanol radical cation (requiring 441 and 490 kJ mol?1, respectively) and loss of a proton to yield neutral methanol (requiring 784 kJ mol?1).  相似文献   

2.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

3.
The collisional activation mass spectra prove that non-decomposing ionized methyl acetate [CH3COOCH3]+? and its enolic isomer [CH2?C(OH)OCH3]+? exist as stable species in potential wells. It is shown, however, that prior to CH3O? loss the decomposing [CH2?C(OH)OCH3]+? ion isomerizes via a rate determining symmetry forbidden [1.3] hydrogen rearrangement to ionized methyl acetate. The alternative mode of two consecutive formally symmetry allowed [1.2] hydrogen migrations can be certainly excluded for this isomerization. The activation energy of such hydrogen rearrangements is of the order of 41–83 kcal · mol?1 depending on the electronic nature of the cations (“open” or “closed” shell systems).  相似文献   

4.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

5.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

6.
Pure [CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} ions are generated only in metastable fragmentations of [CH2?CHCH2X]+˙, X=Cl, Br, I, and [CH3CX?CH2]+˙, X=Br, I, respectively. For ion source generated [C3H5]+ ions there is some structural interconversion. The structure characteristic feature of their collisional activation mass spectra is the ratio m/z 27 ([C2H3]+): m/z 26 ([C2H2]+˙). For \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} the ratio is only weakly dependent upon the translational energy of the ion. For [CH2CHCH2]+, the ratio rises sharply as translational energy is reduced, from 0.9 at 8 kV to c. 3 at 1 kV. [CH2CHCH2]+ ions generated by charge reversal of [CH2CHCH2]? show higher ratios, resulting from their lower average internal energy content. It must therefore be emphasized that [C3H5]+ ion structure assignments should only be made using reference data which apply to specific experimental conditions. [C3H5]+ daughter ion structures for a number of well-known fragmentations have been established. The heat of formation of the 2-propenyl cation was measured to be 969±5 kJ mol?1. Labelling experiments show that at low internal energies, allyl cations do not undergo atom randomization in c. 1–2 μs; high internal energy ions of longer lifetime (c. 8 μs) show complete atom randomization. H˙ atom loss from [13CH3CH?CH2]+˙ has been shown to generate [13CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {}^{{\rm{13}}}{\rm{CH}}_{\rm{2}} \mathop {\rm{C}}\limits^{\rm{ + }} - {\rm{CH}}_{\rm{3}} $\end{document} without any skeletal rearrangement.  相似文献   

7.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

8.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

9.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

10.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

11.
Four pairs of positional isomers of ureidopeptides, FmocNH‐CH(R1)‐φ(NH‐CO‐NH)‐CH(R2)‐OY and FmocNH‐CH(R2)‐φ(NH‐CO‐NH)‐CH(R1)‐OY (Fmoc = [(9‐fluorenyl methyl)oxy]carbonyl; R1 = H, alkyl; R2 = alkyl, H and Y = CH3/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to ? N? CH(R)? N? bond cleavage to form the characteristic N‐ and C‐terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N‐terminus form protonated (9H‐fluoren‐9‐yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N‐terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving an ion‐neutral complex and a direct loss of NH3 and CO2 is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N‐terminus eliminate CO2 followed by corresponding imine to form (9H‐fluoren‐9‐yl)methyl cation (C14H11+) from FmocNH = CHR+. In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M ? H]? ions of ureidopeptide acids undergo a McLafferty‐type rearrangement followed by the loss of CO2 to form an abundant [M ? H ? Fmoc + H]? which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
MINDO/3 calculations for singlet and triplet doubly charged benzene [C6H6]2+ are in satisfactory agreement with the experimentally determined values of the vertical double ionization energy of benzene; calculations for straight chain isomeric structures are consistent with the observed kinetic energy release on fragmentation to [C5H3]+ and [CH3]+. Symmetrical doubly charged benzene ions relax to a less symmetrical cyclic structure having sufficient internal energy to fragment by ring opening and hydrogen transfer towards the ends of the carbon chain. Fragmentation of [CH3C4CH3]2+ to [CH3C4]+ and [CH3]+ is a relatively high energy process (A), whereas both (B): [CH3CHC3CH2]2+ to [CHC3CH2]+ and [CH3]+ and (C): [CH3CHCCHCCH]2+ to [CHCCHCCH]+ and [CH3]+ may be exothermic processes from doubly charged benzene. Furthermore, the calculated energy for the reverse of process (A) is less than the experimentally observed kinetic energy released, whereas larger energies for the reverse of processes B and C are predicted. Heats of formation of homologous series [HCn]+, [CH3Cn]+, [CH2Cn?2CH]+, [CH3Cn?2CH2]+ and [CH2?CHCn?3CH2]+ with 1 < n < 6 are calculated to aid prediction of the most stable products of fragmentation of doubly charged cations. The homologous series [CH2Cn?2CH]+ is relatively stable and may account for ready fragmentation of doubly charged ions to [CnH3]+; alternatively the symmetrical [C5H3]+ ion [CHCCHCCH]+ may be formed. Dicoordinate carbon chains appear to be important stabilizing features for both cations and dications.  相似文献   

13.
The proposed formation of [CH3C(OH)OCH2]+˙ (b) as the intermediate in the isomerization [CH2?C(OH)OCH3]+˙ (c)?b?[CH3COOCH3]+˙ (c has been confirmed by preparation of b from CH3COOCH2OCH3. For the three isomers a–c the dominant metastable ion (MI) dissociation, CH3O˙ loss, involves identical kinetic energy release values. The kinetic barriers for a?b and b?c must be nearly as high as that for CH3O˙ loss from c, as shown by the insensitivity of the mass spectra from collisionally activated dissociation (CAD) of a–c to ionizing electron energy. The H/D scrambling of metastable [CH2?C(OD)OCH3]+˙ and c–D3 ions confirm this, indicating that the barrier for a?b is slightly below that for b?c. Minor low-energy dissociations include losses of CH4 and CH3OH from a and losses of ˙CHO and CH2O from b. Comparison of MI and CAD spectra of a–c with those from [CH3(OH)CH2O]+˙ (d) and [CH3COCH2OH]+˙ (e) give no evidence for skeletal rearrangement of a–c to d or e.  相似文献   

14.
The ion-molecule reactions between [CH3X]+˙ [CH3XH] +, [CH3XCH3]+ ions (X = F, Cl, Br, I) and a number of nucleophiles have been studied by ion cyclotron resonance techniques. Protonation of the nucleophiles is observed to occur from both the molecular ions [CH3]X+˙ and protonated species [CH3XH]+ whereas dimethylhalonium ions [CH3XCH3]+ react principally by methyl cation transfer. A notable exception occurs in methyl iodide where the molecular ions [CH3I]+˙ act both as proton and methyl cation donors, whereas dimethyliodonium ions are found unreactive. The results are discussed with reference to the use of alkyl halides as reagent gases in chemical ionization experiments.  相似文献   

15.
The gas-phase isomerisation reaction of glutamine radical cation from [NH2CH (CH2CH2CONH2) COOH ]+• to [ NH2C (CH2CH2CONH2) C (OH)2]+• has been studied theoretically using the MPWB1K functional approach. The [ NH2 C (CH2CH2CONH2) C (OH)2]+• diol species has been found to be the most stable isomer for glutamine radical cation. Moreover, it has been observed that glutamine has a long enough side-chain with basic groups that acts as a solvent molecule favouring the proton-transfer from C α to COOH group. This fact reduces dramatically the isomerisation energy barriers compared to the same process for glycine radical cation in gas phase. Thus, this reaction can be considered as an example of gas-phase proton-transport catalysed reaction in which the proton-transport is carried out by the reactant molecule itself instead of any solvent. Contribution to the Serafin Fraga Memorial Issue.  相似文献   

16.
The neutralization-reionization mass spectra of alkane radical ions indicate significant differences between the structures and geometries of alkane molecules and their molecular ions, confirming recent ab initio predictions. Ionic isomers that are indistinguishable by collisionally-activated dissociation because of easy interconversion can be characterized by neutralization-reionization if the corresponding neutrals show different reactivities, as is demonstrated for the [C2H5]+/C2H5˙ system and for [C2H4O2]+˙ isomers. For identification of mixtures of more than one neutral species, the relative efficiency for reionizing each neutral must be determined; e.g. the O2 reionization efficiency of ˙CH2OH radicals is ~4 times greater than that of CH3O˙. This information and reference reionization spectra of CH3O˙ and ˙CH2OH show that metastable or collisionally activated methyl acetate cations lose CH3O˙, not ˙CH2OH as previously reported; the newly-formed CH3O˙ undergoes partial (~20%) isomerization to ˙CH2OH in the ~10?6s before reionization. Similar results are obtained for [B(OCH3)3]+˙.  相似文献   

17.
On the Preparation of Dimercapto(methyl)Sulfonium Salts [CH3S(SH)2]+ AsF6? and [CH3S(SH)2]+SbCl6? and the Bis(chlorothio)methylsulfonium Salts [CH3S(SCI)2]+ AsF6? and [CH3S(SCI)2]+ SbCl6? The preparation of the dimercapto(methyl)sulfonium salts [CH3S(SH)2]+ AsF6? and [CH3S(SH)2]+SbCl6? from [CH3SCl2]+ salts and H2S at 195 K is reported. The salts are stable below 210 K. They are characterized by additional Raman spektroscopic measurements of the isotopic labelled cations [CH3S(SD)2]+, [CH3S(34SH)2]+ and [CH3S(34SD)2]+. The dimercapto(methyl)sulfonium salts are transfered into bis(chlorthio)methylsulfonium salts by reaction with Cl2 at 195 K.  相似文献   

18.
Critical energies for 1,3-R sigmatropic migrations (R?H, OH, CH3 and C6H5) have been calculated by means of the MINDO/3 method. This investigation was carried out for the system [RCH2CH?CH2] and the results indicated that hydroxyl group migration is energetically favoured (critical energy = 53 kJ mol?1). Calculations are also presented for [3-buten-2-ol] isomerizations. The lowest energy pathway is related to the [2-buten-1-ol]; the corresponding critical energy for OH migration is equal to 33 kJ mol?1 in this case.  相似文献   

19.
The 70 eV mass spectrum of phenyl ω-dimethoxyethyl telluride [C6H5? Te? CH2CH(OR)2, R?CH3]contains an intense peak at m/z 238 which corresponds to a rearrangement ion [C6H5? Te? OR]+. The formation of this species is further illustrated by the presence of a peak at m/z 241 in the spectrum of the hexadeuterated analog (R?CD3) and a peak at m/z 252 in the spectrum of the ethyl analog (R?CH2CH3). These combined results illustrate the presence of only one of the alkoxyl groups in the rearrangement ion. Several other abundant ions that contain oxygen but not tellurium are present in the spectra of these compounds. High resolution analyses have aided in the determination of the origin and composition of several of the characteristic ions formed upon electron impact fragmentation of phenyl ω-dimethoxyethyl telluride.  相似文献   

20.
Oxygen-alkyl cleavage is ruled out in the methane chemical ionization- and electron mpact-induced decomposition of cyclopropyl ethers by the finding that for trans,trans-2,3-diethylmethoxycyclopropane the [M ? C2H5·]+ ion is more intense than the [M ? CH3·]+ ion. The possibility for [M + H ? C2H6]+ is discounted by comparison with the methane chemical ionization nass spectrum of tran,tran-2,3-dimethylmethoxycyclopropane. The isobutane chemical ionization nass spectrum of the diethylcyclopropyl methyl ether affords nearly exclusive electrocyclic methanol fragmentation, i.e. [M + H ? CH3OH]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号